Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Z Med Phys ; 34(1): 31-43, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030484

RESUMO

The International Partner Agencies of the International Space Station (ISS) present a comparison of the ionizing radiation absorbed dose and risk quantities used to characterize example missions in lunar space. This effort builds on previous collaborative work that characterizes radiation environments in space to support radiation protection for human spaceflight on ISS in low-Earth orbit (LEO) and exploration missions beyond (BLEO). A "shielded" ubiquitous galactic cosmic radiation (GCR) environment combined with--and separate from--the transient challenge of a solar particle event (SPE) was modelled for a simulated 30-day mission period. Simple geometries of relatively thin and uniform shields were chosen to represent the space vehicle and other available shielding, and male or female phantoms were used to represent the body's self-shielding. Absorbed dose in organs and tissues and the effective dose were calculated for males and females. Risk parameters for cancer and other outcomes are presented for selected organs. The results of this intracomparison between ISS Partner Agencies itself provide insights to the level of agreement with which space agencies can perform organ dosimetry and calculate effective dose. This work was performed in collaboration with the advisory and guidance efforts of the International Commission on Radiological Protection (ICRP) Task Group 115 and will be presented in an ICRP Report.


Assuntos
Radiação Cósmica , Voo Espacial , Feminino , Humanos , Masculino , Doses de Radiação , Radiometria , Astronave
2.
Z Med Phys ; 34(1): 14-30, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37507310

RESUMO

The Partner Agencies of the International Space Station (ISS) maintain separate career exposure limits and shared Flight Rules that control the ionising radiation exposures that crewmembers can experience due to ambient environments throughout their space missions. In low Earth orbit as well as further out in space, energetic ions referred to as galactic cosmic radiation (GCR) easily penetrate spacecraft and spacecraft contents and consequently are always present at low dose rates. Protons and electrons that are trapped in the Earth's geomagnetic field are encountered intermittently, and a rare energetic solar particle event (SPE) may expose crew to (mostly) energetic protons. Space radiation protection goals are to optimize radiation exposures to maintain deleterious late effects at known and acceptable levels and to prevent any early effects that might compromise crew health and mission success. The conventional radiation protection metric effective dose provides a basic framework for limiting exposures associated with human spaceflight and can be communicated to all stakeholders. Additional metrics and uncertainty analyses are required to understand more completely and to convey nuanced information about potential impacts to an individual astronaut or to a space mission. Missions to remote destinations well beyond low Earth orbit (BLEO) are upcoming and bestow additional challenges that shape design and radiation protection needs. NASA has recently adopted a more permissive career exposure limit based upon effective dose and new restrictions on mission exposures imposed by nuclear technologies. This manuscript reviews the exposure limits that apply to the ISS crewmembers. This work was performed in collaboration with the advisory and guidance efforts of International Commission on Radiological Protection (ICRP) Task Group 115 and will be summarized in an upcoming ICRP Report.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Humanos , Doses de Radiação , Prótons , Radiação Cósmica/efeitos adversos , Medição de Risco
3.
Life Sci Space Res (Amst) ; 39: 106-118, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945083

RESUMO

The dosimeter Liulin-MO for measuring the radiation environment onboard the ExoMars Trace Gas Orbiter (TGO) is a module of the Fine Resolution Epithermal Neutron Detector (FREND). Here we present results from measurements of the charged particle fluxes, dose rates and estimation of dose equivalent rates at ExoMars TGO Mars science orbit, provided by Liulin-MO from May 2018 to June 2022. The period of measurements covers the declining and minimum phases of the solar activity in 24th solar cycle and the rising phase of the 25th cycle. Compared are the radiation values of the galactic cosmic rays (GCR) obtained during the different phases of the solar activity. The highest values of the dose rate and flux from GCR are registered from March to August 2020. At the minimum of 24th and transition to 25th solar cycle the dose rate from GCR is 15.9 ± 1.6 µGy h-1, particle flux is 3.3 ± 0.17 cm-2s-1, dose equivalent rate is 72.3 ± 14.4 µSv h-1. Since September 2020 the dose rate and flux of GCR decrease. Particular attention is drawn to the observation of the solar energetic particle (SEP) events in July, September and October 2021, February and March 2022 as well as their effects on the radiation environment on TGO during the corresponding periods. The SEP event during15-19 February 2022 is the most powerful event observed in our data. The SEP dose during this event is 13.8 ± 1.4 mGy (in Si), the SEP dose equivalent is 21.9 ± 4.4 mSv. SEP events recorded in Mars orbit are related to coronal mass ejections (CME) observed by SOHO and STEREO A coronagraphs. Compared are the time profiles of the count rates measured by Liulin-MO, the neutron detectors of FREND and neutron detectors of the High Energy Neutron Detector (HEND) aboard Mars Odyssey during 15-19 February 2022 event. The data obtained is important for the knowledge of the radiation environment around Mars, regarding future manned and robotic flights to the planet. The data for SEP events in Mars orbit during July 2021-March 2022 contribute to the details on the solar activity at a time when Mars is on the opposite side of the Sun from Earth.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Voo Espacial , Atividade Solar , Órbita , Monitoramento de Radiação/métodos
4.
Life Sci Space Res (Amst) ; 39: 3-13, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945087

RESUMO

The Radiation monitoring system (RMS) continuously operated in various configurations since the launch of the Zvezda module of the International Space Station (ISS). The RMS consisted of 7 units, namely: the R-16 dosimeter, 4 DB-8 dosimeters, utility and data collection units. The obtained data covers a time of 22 years. This paper analyses the radiation environment variations on board the "Zvezda" module. Variations of the onboard daily dose rate associated with changes of ISS altitude and 11-year cycle galactic cosmic rays' variations are analyzed and discussed. It is shown that the observed increase in the daily dose from 0.20 - 0.25 to 0.35 - 0.50 mGy/day is mostly due to the increase of ISS orbit altitude, resulting in a substantial increase of the dose contribution from the South Atlantic Anomaly (SAA) Region. Dose rate variations in the SAA as well as latitude and longitude dose rate distributions are discussed in detail. Analysis confirms that the well-known westward drift effect of the SAA is clearly visible from radiation dose measurements on the ISS.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Voo Espacial , Monitoramento de Radiação/métodos , Astronave , Doses de Radiação , Federação Russa
5.
Life Sci Space Res (Amst) ; 8: 38-51, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26948012

RESUMO

Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation.


Assuntos
Radiação Cósmica , Laboratórios , Radiobiologia , Pesquisa , Estados Unidos , United States National Aeronautics and Space Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA