Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Asian Nat Prod Res ; : 1-16, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975979

RESUMO

Three chromomycin derivatives, chromomycins A3 (1, CA3), A5 (2, CA5), and monodeacetylchromomycin A3 (3, MDA-CA3), were identified from the soil-derived Streptomyces sp. CGMCC 26516. A reinvestigation of the structure of CA5 is reported, of which the absolute configuration was unambiguously determined for the first time to be identical with that of CA3 based on nuclear magnetic resonance (NMR) data analysis as well as NMR and electronic circular dichroism calculations. Compounds 1-3 showed potent cytotoxicity against the non-small-cell lung cancer (NSCLC) cells (A549, H460, H157-c-FLIP, and H157-LacZ) and down-regulated the protein expression of c-FLIP in A549 cells. The IC50 values of chromomycins in H157-c-FLIP were higher than that in H157-LacZ. Furthermore, si-c-FLIP promoted anti-proliferation effect of chromomycins in NSCLC cells. In nude mice xenograft model, 1 and 2 both showed more potent inhibition on the growth of H157-lacZ xenografts than that of H157-c-FLIP xenografts. These results verify that c-FLIP mediates the anticancer effects of chromomycins in NSCLC.

2.
Acta Pharmacol Sin ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811775

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the epidermal growth factor precursor homologous domain A (EGF-A) of low-density lipoprotein receptor (LDLR) in the liver and triggers the degradation of LDLR via the lysosomal pathway, consequently leading to an elevation in plasma LDL-C levels. Inhibiting PCSK9 prolongs the lifespan of LDLR and maintains cholesterol homeostasis in the body. Thus, PCSK9 is an innovative pharmacological target for treating hypercholesterolemia and atherosclerosis. In this study, we discovered that E28362 was a novel small-molecule PCSK9 inhibitor by conducting a virtual screening of a library containing 40,000 compounds. E28362 (5, 10, 20 µM) dose-dependently increased the protein levels of LDLR in both total protein and the membrane fraction in both HepG2 and AML12 cells, and enhanced the uptake of DiI-LDL in AML12 cells. MTT assay showed that E28362 up to 80 µM had no obvious toxicity in HepG2, AML12, and HEK293a cells. The effects of E28362 on hyperlipidemia and atherosclerosis were evaluated in three different animal models. In high-fat diet-fed golden hamsters, administration of E28362 (6.7, 20, 60 mg·kg-1·d-1, i.g.) for 4 weeks significantly reduced plasma total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) and PCSK9 levels, and reduced liver TC and TG contents. In Western diet-fed ApoE-/- mice (20, 60 mg·kg-1·d-1, i.g.) and human PCSK9 D374Y overexpression mice (60 mg·kg-1·d-1, i.g.), administration of E28362 for 12 weeks significantly decreased plasma LDL-C levels and the area of atherosclerotic lesions in en face aortas and aortic roots. Moreover, E28362 significantly increased the protein expression level of LDLR in the liver. We revealed that E28362 selectively bound to PCSK9 in HepG2 and AML12 cells, blocked the interaction between LDLR and PCSK9, and induced the degradation of PCSK9 through the ubiquitin-proteasome pathway, which finally resulted in increased LDLR protein levels. In conclusion, E28362 can block the interaction between PCSK9 and LDLR, induce the degradation of PCSK9, increase LDLR protein levels, and alleviate hyperlipidemia and atherosclerosis in three distinct animal models, suggesting that E28362 is a promising lead compound for the treatment of hyperlipidemia and atherosclerosis.

3.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675387

RESUMO

Aberrant epigenetic modifications are fundamental contributors to the pathogenesis of various cancers. Consequently, targeting these aberrations with small molecules, such as histone deacetylase (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors, presents a viable strategy for cancer therapy. The objective of this study is to assess the anti-cancer efficacy of trichostatin C (TSC), an analogue of trichostatin A sourced from the fermentation of Streptomyces sp. CPCC 203909. Our investigations reveal that TSC demonstrates potent activity against both human lung cancer and urothelial bladder cancer cell lines, with IC50 values in the low micromolar range. Moreover, TSC induces apoptosis mediated by caspase 3/7 and arrests the cell cycle at the G2/M phase. When combined with the DNMT inhibitor decitabine, TSC exhibits a synergistic anti-cancer effect. Additionally, protein analysis elucidates a significant reduction in the expression of the tyrosine kinase receptor Axl. Notably, elevated concentrations of TSC correlate with the up-regulation of the transcription factor forkhead box class O1 (FoxO1) and increased levels of the proapoptotic proteins Bim and p21. In conclusion, our findings suggest TSC as a promising anti-cancer agent with HDAC inhibitory activity. Furthermore, our results highlight the potential utility of TSC in combination with DNMT inhibitors for cancer treatment.

4.
SLAS Discov ; 29(3): 100153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518956

RESUMO

Cathepsin L (CTSL), a lysosomal cysteine proteinase, is primarily dedicated to the metabolic turnover of intracellular proteins. It is involved in various physiological processes and contributes to pathological conditions such as viral infection, tumor invasion and metastasis, inflammatory status, atherosclerosis, renal disease, diabetes, bone diseases, and other ailments. The coronavirus disease 2019 (COVID-19), with its rapid global spread and significant mortality, has been a worldwide epidemic since the late 2019s. Notably, CTSL plays a role in the processing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, providing a potential avenue to block coronavirus host cell entry and thereby inhibit SARS-CoV-2 infection in humans. In this study, we have developed a novel method using fluorescence polarization (FP) for screening CTSL inhibitors in a high-throughput format. The optimized assay demonstrated its appropriateness for high-throughput screening (HTS) with a Z-factor of 0.9 in a 96-well format. Additionally, the IC50 of the known inhibitor, Z-Phe-Tyr-CHO, was determined to be 188.50 ± 46.88 nM. Upon screening over 2000 small molecules, we identified, for the first time, the anti-CTSL properties of a benzothiazoles derivative named IMB 8015. This work presents a novel high-throughput approach and its application in discovering and evaluating CTSL inhibitors.


Assuntos
Catepsina L , Polarização de Fluorescência , Ensaios de Triagem em Larga Escala , Ensaios de Triagem em Larga Escala/métodos , Humanos , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Polarização de Fluorescência/métodos , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Tratamento Farmacológico da COVID-19
5.
Org Lett ; 26(1): 1-5, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37988124

RESUMO

Two previous unreported epipolythiodioxopiperazines of the emestrin family, namely, noremestrin A (1) and secoemestrin E (2), were successfully isolated from the fungal source Emericella sp. 1454. Employing comprehensive spectroscopic techniques, such as high-resolution electrospray ionization mass spectrometry, infrared, and nuclear magnetic resonance (NMR), along with NMR and electronic circular dichroism calculations, the chemical structures of compounds 1 and 2 were elucidated. Particularly noteworthy is the distinctive nature of noremestrin A, representing the inaugural instance of a noremestrin variant incorporating a sulfur-bearing 15-membered macrocyclic lactone moiety. Compounds 1 and 2 exhibited weak cytotoxic activities against the human chronic myelocytic leukemia cell lines MEG-01 and K562.


Assuntos
Antineoplásicos , Emericella , Humanos , Lactonas/química , Emericella/química , Espectroscopia de Ressonância Magnética , Antineoplásicos/química , Aspergillus , Dicroísmo Circular , Estrutura Molecular
6.
Nat Prod Res ; : 1-7, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154381

RESUMO

Five isocoumarin derivatives including three new compounds, aspermarolides A-C (1-3), and two known analogues, 8-methoxyldiaporthin (4) and diaporthin (5) were obtained from the culture extract of Aspergillus flavus CPCC 400810. The structures of these compounds were elucidated by spectroscopic methods. The double bond geometry of 1 and 2 were assigned by the coupling constants. The absolute configuration of 3 was determined by electronic circular dichroism experiment. All compounds showed no cytotoxic activities against the two human cancer cells HepG2 and Hela.

7.
Front Pharmacol ; 14: 1073037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37050909

RESUMO

Background: Pin1 is a member of the evolutionarily conserved peptidyl-prolyl isomerase (PPIase) family of proteins. Following phosphorylation, Pin1-catalyzed prolyl-isomerization induces conformational changes, which serve to regulate the function of many phosphorylated proteins that play important roles during oncogenesis. Thus, the inhibition of Pin1 provides a unique means of disrupting oncogenic pathways and therefore represents an appealing target for novel anticancer therapies. Methods: As Pin1 is conserved between yeast and humans, we employed budding yeast to establish a high-throughput screening method for the primary screening of Pin1 inhibitors. This effort culminated in the identification of the compounds HWH8-33 and HWH8-36. Multifaceted approaches were taken to determine the inhibition profiles of these compounds against Pin1 activity in vitro and in vivo, including an isomerization assay, surface plasmon resonance (SPR) technology, virtual docking, MTT proliferation assay, western blotting, cell cycle analysis, apoptosis analysis, immunofluorescence analysis, wound healing, migration assay, and nude mouse assay. Results: In vitro, HWH8-33 and HWH8-36 could bind to purified Pin1 and inhibited its enzyme activity; showed inhibitory effects on cancer cell proliferation; led to G2/M phase arrest, dysregulated downstream protein expression, and apoptosis; and suppressed cancer cell migration. In vivo, HWH8-33 suppressed tumor growth in the xenograft mice after oral administration for 4 weeks, with no noticeable toxicity. Together, these results show the anticancer activity of HWH8-33 and HWH8-36 against Pin1 for the first time. Conclusion: In summary, we identified two hit compounds HWH8-33 and HWH8-36, which after further structure optimization have the potential to be developed as antitumor drugs.

8.
J Nat Prod ; 86(3): 604-611, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693727

RESUMO

Altersteroids A-D (1-4), four new 9,11-secosteroid-derived γ-lactones, were isolated from cultures of the ascomycete fungus Alternaria sp. Their structures were elucidated primarily by NMR experiments. The absolute configuration of 1 was established by X-ray crystallographic analysis of its di-p-nitrobenzenesulfonate 1a using Cu Kα radiation, whereas those for 2-4 were assigned by quantum-chemical calculations. Compounds 1-4 incorporate a γ-lactone moiety fused to the steroid D ring at C-13/C-14. Compound 3 showed moderate cytotoxicity toward four tumor cell lines and induced an apoptotic process in A549 cells. Notably, compound 3 showed equipotent activity against the cisplatin-sensitive MB49 and -resistant MB49 CisR cells, with an IC50 value of 12.7 µM.


Assuntos
Ascomicetos , Secoesteroides , Alternaria/química , Lactonas/química , Estrutura Molecular , Ascomicetos/química , Linhagem Celular Tumoral
9.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362263

RESUMO

Krüppel-like factor 2 (KLF2) is an atherosclerotic protective transcription factor that maintains endothelial cell homeostasis through its anti-inflammatory, anti-oxidant, and antithrombotic properties. The aim of this study was to discover KLF2 activators from microbial secondary metabolites and explore their potential molecular mechanisms. By using a high-throughput screening model based on a KLF2 promoter luciferase reporter assay, column chromatography, electrospray ionization mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR) spectra, trichostatin D (TSD) was isolated from the rice fermentation of Streptomyces sp. CPCC203909 and identified as a novel KLF2 activator. Real-time-quantitative polymerase chain reaction (RT-qPCR) results showed that TSD upregulated the mRNA level of KLF2 in endothelial cells. Functional assays showed that TSD attenuated monocyte adhesion to endothelial cells, decreased vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) expression, and exhibited an anti-inflammatory effect in tumor necrosis factor alpha (TNFα)-induced endothelial cells. We further demonstrated through siRNA and western blot assays that the effects of TSD on monocyte adhesion and inflammation in endothelial cells were partly dependent on upregulating KLF2 expression and then inhibiting the NOD-like receptor protein 3 (NLRP3)/Caspase-1/interleukin-1beta (IL-1ß) signaling pathway. Furthermore, histone deacetylase (HDAC) overexpression and molecular docking analysis results showed that TSD upregulated KLF2 expression by inhibiting HDAC 4, 5, and 7 activities. Taken together, TSD was isolated from the fermentation of Streptomyces sp. CPCC203909 and first reported as a potential activator of KLF2 in this study. Furthermore, TSD upregulated KLF2 expression by inhibiting HDAC 4, 5, and 7 and attenuated endothelial inflammation via regulation of the KLF2/NLRP3/Caspase-1/IL-1ß signaling pathway.


Assuntos
Células Endoteliais , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Simulação de Acoplamento Molecular , Inflamação/patologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Caspases/metabolismo
10.
Org Lett ; 24(32): 5941-5945, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35938920

RESUMO

Prenylemestrins A and B (1 and 2, respectively), two unusual epipolythiodioxopiperazines featuring a thioethanothio bridge instead of a polysulfide bridge, were isolated from the fungus Emericella sp. CPCC 400858 guided by genomic analysis. Their structures were determined by extensive spectroscopic data, NMR and ECD calculations, and X-ray diffraction analysis. A plausible biosynthetic pathway for 1 and 2 was proposed on the basis of gene cluster analysis. Prenylemestrins A and B exhibited cytotoxicities against human chronic myelocytic leukemia cell lines K562 and MEG-01.


Assuntos
Emericella , Cristalografia por Raios X , Emericella/química , Fungos , Genômica , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular
11.
Acta Pharm Sin B ; 12(1): 210-227, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127381

RESUMO

Pancreatic adenocarcinoma (PAAD) is one of the most lethal malignancies. Although gemcitabine (GEM) is a standard treatment for PAAD, resistance limits its application and therapy. Secoemestrin C (Sec C) is a natural compound from the endophytic fungus Emericella, and its anticancer activity has not been investigated since it was isolated. Our research is the first to indicate that Sec C is a broad-spectrum anticancer agent and could exhibit potently similar anticancer activity both in GEM-resistant and GEM-sensitive PAAD cells. Interestingly, Sec C exerted a rapid growth-inhibiting effect (80% death at 6 h), which might be beneficial for patients who need rapid tumor shrinkage before surgery. Liquid chromatography/mass spectrometry and N-acetyl-l-cysteine (NAC) reverse assays show that Sec C sulfates cysteines to disrupt disulfide-bonds formation in endoplasmic reticulum (ER) proteins to cause protein misfolding, leading to ER stress and disorder of lipid biosynthesis. Microarray data and subsequent assays show that ER stress-mediated ER-associated degradation (ERAD) ubiquitinates and downregulates YAP to enhance ER stress via destruction complex (YAP-Axin-GSK-ßTrCP), which also elucidates a unique degrading style for YAP. Potent anticancer activity in GEM-resistant cells and low toxicity make Sec C a promising anti-PAAD candidate.

12.
Eur J Pharmacol ; 919: 174802, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35143830

RESUMO

IMB5046 is a nitrobenzoate microtubule inhibitor we reported previously. During screening of its structural analogues, we identified a novel compound IMB5476 with increased aqueous solubility. Here, its antitumor activity and the underlying mechanism were investigated. IMB5476 disrupted microtubule networks in cells and arrested cell cycle at G2/M phase. It inhibited purified tubulin polymerization in vitro. Competition assay indicated that it bound to tubulin at the colchicine pocket. Further experiments proved that it induced cell death by mitotic catastrophe and apoptosis. Notably, it was a poor substrate of P-glycoprotein and exhibited potent cytotoxicity against drug-resistant tumor cells. In addition, IMB5476 could inhibit angiogenesis in vitro. IMB5476 also inhibited the growth of drug-resistant KBV200 xenografts in mice. Conclusively, our data reveal a novel nitrobenzoate microtubule inhibitor with improved aqueous solubility and can overcome multidrug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Moduladores de Tubulina/farmacologia , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microtúbulos/metabolismo , Moduladores de Tubulina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Front Chem ; 10: 1106869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712984

RESUMO

Three new hexadepsipeptides (1-3), along with beauvericin (4), beauvericin D (5), and four 4-hydroxy-2-pyridone derivatives (6-9) were isolated from the endophytic fungus Fusarium sp. CPCC 400857 that derived from the stem of tea plant. Their structures were determined by extensive 1D and 2D NMR, and HRESIMS analyses. The absolute configuration of hexadepsipeptides were elucidated by the advanced Marfey's method and chiral HPLC analysis. Compounds 4, and 7-9 displayed the cytotoxicity against human pancreatic cancer cell line, AsPC-1 with IC50 values ranging from 3.45 to 29.69 µM, and 7 and 8 also showed the antiviral activity against the coronavirus (HCoV-OC43) with IC50 values of 13.33 and 6.65 µM, respectively.

14.
Cell Biosci ; 11(1): 199, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34865653

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible and has caused a pandemic named coronavirus disease 2019 (COVID-19), which has quickly spread worldwide. Although several therapeutic agents have been evaluated or approved for the treatment of COVID-19 patients, efficacious antiviral agents are still lacking. An attractive therapeutic target for SARS-CoV-2 is the main protease (Mpro), as this highly conserved enzyme plays a key role in viral polyprotein processing and genomic RNA replication. Therefore, the identification of efficacious antiviral agents against SARS-CoV-2 Mpro using a rapid, miniaturized and economical high-throughput screening (HTS) assay is of the highest importance at the present. RESULTS: In this study, we first combined the fluorescence polarization (FP) technique with biotin-avidin system (BAS) to develop a novel and step-by-step sandwich-like FP screening assay to quickly identify SARS-CoV-2 Mpro inhibitors from a natural product library. Using this screening assay, dieckol, a natural phlorotannin component extracted from a Chinese traditional medicine Ecklonia cava, was identified as a novel competitive inhibitor against SARS-CoV-2 Mpro in vitro with an IC50 value of 4.5 ± 0.4 µM. Additionally, dieckol exhibited a high affinity with SARS-CoV-2 Mpro using surface plasmon resonance (SPR) analysis and could bind to the catalytic sites of Mpro through hydrogen-bond interactions in the predicted docking model. CONCLUSIONS: This innovative sandwich-like FP screening assay enables the rapid discovery of antiviral agents targeting viral proteases, and dieckol will be an excellent lead compound for generating more potent and selective antiviral agents targeting SARS-CoV-2 Mpro.

15.
J Nat Prod ; 84(12): 3122-3130, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34846891

RESUMO

A new cytochalasin dimer, verruculoid A (1), three new cytochalasin derivatives, including 12-nor-cytochalasin F (2), 22-methoxycytochalasin B6 (3), and 19-hydroxycytochalasin B (4), and 20-deoxycytochalasin B (5), a synthetic product obtained as a natural product for the first time, together with four known analogues (6-9), were isolated and identified from the culture extract of Curvularia verruculosa CS-129, an endozoic fungus obtained from the inner fresh tissue of the deep-sea squat lobster Shinkaia crosnieri, which was collected from the cold seep area of the South China Sea. Structurally, verruculoid A (1) represents the first cytochalasin homodimer containing a thioether bridge, while 12-nor-cytochalasin F (2) is the first 12-nor-cytochalasin derivative. Their structures were elucidated by detailed interpretation of the NMR spectroscopic and mass spectrometric data. X-ray crystallographic analysis and ECD calculations confirmed their structures and absolute configurations. Compound 1 displayed activity against the human pathogenic bacterium Escherichia coli (MIC = 2 µg/mL), while compounds 4, 8, and 9 showed cytotoxicity against three tumor cell lines (HCT-116, HepG-2, and MCF-7) with IC50 values from 5.2 to 12 µM. The structure-activity relationship was briefly discussed.


Assuntos
Temperatura Baixa , Crustáceos/química , Curvularia/isolamento & purificação , Citocalasinas/farmacologia , Ecossistema , Animais , Citocalasinas/química , Citocalasinas/isolamento & purificação
16.
Bioorg Chem ; 116: 105361, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562672

RESUMO

The OPG/RANKL/RANK pathway is a promising target for the design of therapeutic agents used in the treatment of osteoporosis. E09241 with an N-methylpyridine-chlorofuranformamide structural skeleton was previously identified to decrease bone loss and thus protect against osteoporosis in ovariectomized rats through increasing osteoprotegerin (OPG) expression. In this study, 36 derivatives of E09241 (3a) were prepared. The synthesis, up-regulation of OPG activities, SAR (structure-activity relationship), and cytotoxicity of these compounds are presented. Compounds with good up-regulating OPG activities could inhibit RANKL (the receptor activator of nuclear factor-kappa B ligand)-induced osteoclastogenesis in RAW264.7 cells. Particularly, compounds 3c and 3i1 significantly reduced NFATc1 and MMP-9 protein expression through inhibition of the NF-κB and MAPK pathways in RANKL induced RAW264.7 cells. In addition, compounds 3c and 3v significantly promoted osteoblast differentiation in MC3T3-E1 cells in osteogenic medium, and compounds 3c, 3v, and 3i1 obviously increased OPG protein expression and secretion in MC3T3-E1 cells. Furthermore, the pharmacokinetic profiles, acute toxicity, and hERG K+ channel effects of compounds 3a, 3c, 3e, 3v, and 3i1 were investigated. Taken together, these results indicate that N-methylpyridine-chlorofuranformamide analog 3i1 could serve as a promising lead for the development of new agents for treating osteoporosis.


Assuntos
Formamidas/farmacologia , Furanos/farmacologia , Osteoprotegerina/metabolismo , Piridinas/farmacologia , Ligante RANK/antagonistas & inibidores , Células 3T3 , Animais , Relação Dose-Resposta a Droga , Formamidas/química , Furanos/química , Camundongos , Estrutura Molecular , Osteogênese/efeitos dos fármacos , Piridinas/química , Ligante RANK/metabolismo , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
17.
J Bone Miner Res ; 36(3): 591-603, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33289180

RESUMO

Myeloperoxidase (MPO) is a heme peroxidase that plays an important role in innate immunity for host defense against invading microorganisms by catalyzing hydrogen peroxide (H2 O2 )-mediated reactions. Although many reports indicate MPO exerts beneficial or detrimental effects on a variety of inflammatory diseases, little is known with regard to its functional role in bone homeostasis in vivo. Here, our work demonstrates that MPO was transcriptionally downregulated in response to osteoclastogenic stimuli and that exogenous alteration of MPO expression negatively regulated osteoclast (OC) differentiation in vitro. Genetic ablation of Mpo resulted in osteoporotic phenotypes and potentiated bone-resorptive capacity in mice. Mechanistically, accumulation of intracellular H2 O2 and reactive oxygen species (ROS) were observed in MPO deficiency, and MPO overexpression suppressed ROS production in mouse OC precursors. Moreover, a ROS scavenger Tempol inhibited the effect of MPO deficiency on OC formation and function as well as on receptor activator of nuclear factor-κB ligand (RANKL)-initiated transduction signal activation including NF-κB, mitogen-activated protein kinases (MAPKs), and Akt, indicating the increased ROS caused by MPO deficiency contributes to osteoclastogenesis. Taken together, our data demonstrate that MPO has a protective role in bone turnover by limiting osteoclastogenesis and bone resorption physiologically through modulating intracellular H2 O2 level. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Diferenciação Celular , Humanos , Camundongos , NF-kappa B , Osteogênese , Peroxidase , Ligante RANK , Espécies Reativas de Oxigênio
18.
EBioMedicine ; 52: 102650, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32058941

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that down-regulates hepatic low-density lipoprotein receptor (LDLR) by binding and shuttling LDLR to lysosomes for degradation. The development of therapy that inhibits PCSK9 has attracted considerable attention for the management of cardiovascular disease risk. However, only monoclonal antibodies of PCSK9 have reached the clinic use. Oral administration of small-molecule transcriptional inhibitors has the potential to become a therapeutic option. METHODS: Here, we developed a cell-based small molecule screening platform to identify transcriptional inhibitors of PCSK9. Through high-throughput screening and a series of evaluation, we found several active compounds. After detailed investigation on the pharmacological effect and molecular mechanistic characterization, 7030B-C5 was identified as a potential small-molecule PCSK9 inhibitor. FINDINGS: Our data showed that 7030B-C5 down-regulated PCSK9 expression and increased the total cellular LDLR protein and its mediated LDL-C uptake by HepG2 cells. In both C57BL/6 J and ApoE KO mice, oral administration of 7030B-C5 reduced hepatic and plasma PCSK9 level and increased hepatic LDLR expression. Most importantly, 7030B-C5 inhibited lesions in en face aortas and aortic root in ApoE KO mice with a slight amelioration of lipid profiles. We further provide evidences suggesting that transcriptional regulation of PCSK9 by 7030B-C5 mostly depend on the transcriptional factor HNF1α and FoxO3. Furthermore, FoxO1 was found to play an important role in 7030B-C5 mediated integration of hepatic glucose and lipid metabolism. INTERPRETATION: 7030B-C5 with potential suppressive effect of PCSK9 expression may serve as a promising lead compound for drug development of cholesterol/glucose homeostasis and cardiovascular disease therapy. FUND: This work was supported by grants from the National Natural Science Foundation of China (81473214, 81402929, and 81621064), the Drug Innovation Major Project of China (2018ZX09711001-003-006, 2018ZX09711001-007 and 2018ZX09735001-002), CAMS Innovation Fund for Medical Sciences (2016-I2M-2-002, 2016-I2M-1-011 and 2017-I2M-1-008), Beijing Natural Science Foundation (7162129).


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de PCSK9 , Pró-Proteína Convertase 9/genética , Inibidores de Proteases/farmacologia , Animais , Apolipoproteínas E/genética , Aterosclerose/patologia , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Glucose/metabolismo , Células Hep G2 , Fator 1-alfa Nuclear de Hepatócito , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Inibidores de Proteases/química
19.
FASEB J ; 34(1): 1398-1411, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914630

RESUMO

Atherosclerosis is a chronic disease characterized by lipid deposition and inflammatory response. NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome-facilitated inflammatory responses are crucial in the pathogenesis of atherosclerosis, and thus new therapeutic approaches are emerging that target NLRP3 and inflammation. Here, we explored the anti-atherosclerotic effect and mechanisms of a new rutaecarpine derivative, 5-deoxy-rutaecarpine (R3) in vitro and in vivo. R3 treatment attenuated atherosclerosis development and increased plaque stability in Apoe-/- mice fed a high-fat diet, and decreased levels of inflammatory mediators, such as interleukin-1ß, in the serum of Apoe-/- mice and in oxidized low-density lipoprotein (ox-LDL)-stimulated murine macrophages. R3 treatment inhibited NLRP3 inflammasome activation in the livers of Apoe-/- mice and ox-LDL-stimulated murine macrophages by inhibiting NF-κB and MAPK pathways. Additionally, R3 significantly decreased total cholesterol in the serum and livers of Apoe-/- mice and promoted cholesterol efflux in murine macrophages through upregulating protein expression of ATP-binding cassette subfamily A member 1 and scavenger receptor class B type I/human CD36 and lysosomal integral membrane protein-II analogous-1. Our results demonstrated that R3 prevented atherosclerotic progression via attenuating NLRP3 inflammasome-related inflammation and modulating cholesterol transport.


Assuntos
Aterosclerose/tratamento farmacológico , Colesterol/metabolismo , Alcaloides Indólicos/farmacologia , Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Quinazolinas/farmacologia , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Transporte Biológico Ativo/efeitos dos fármacos , Colesterol/genética , Inflamassomos/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout para ApoE , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
20.
SLAS Discov ; 25(4): 397-408, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31858876

RESUMO

Atherosclerosis is the pathological basis of most cardiovascular diseases. Reverse cholesterol transport (RCT) is a main mechanism of cholesterol homeostasis and involves the direct transport of high-density lipoprotein (HDL) cholesteryl ester by selective cholesterol uptake. Hepatic scavenger receptor class B member 1 (SR-BI) overexpression can effectively promote RCT and reduce atherosclerosis. SR-BI may be an important target for prevention or treatment of atherosclerotic disease. In our study, we inserted human SR-BI mRNA 3' untranslated region (3'UTR) downstream of the luciferase reporter gene, to establish a high-throughput screening model based on stably transfected HepG2 cells and to screen small-molecule compounds that can significantly enhance the mRNA stability of the SR-BI gene. Through multiple screenings of 25 755 compounds, the top five active compounds that have similar structures were obtained, with a positive rate of 0.19%. The five positive compounds could enhance the SR-BI expression and uptake of DiI-HDL in the hepatocyte HepG2. E238B-63 could also effectively extend the half-life of SR-BI mRNA and enhance the SR-BI mRNA and protein level and the uptake of DiI-HDL in hepatocytes in a time-dependent and dose-dependent manner. The structure-activity relationship analysis showed that the structure N-(3-hydroxy-2-pyridyl) carboxamide is possibly the key pharmacophore of the active compound, providing reference for acquiring candidate compounds with better activity. The positive small molecular compounds obtained in this study might become new drug candidates or lead compounds for the treatment of cardiovascular diseases and contribute to the further study of the posttranscriptional regulation mechanism of the SR-BI gene.


Assuntos
Aterosclerose/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Receptores Depuradores Classe B/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Aterosclerose/genética , Aterosclerose/metabolismo , Ésteres do Colesterol/genética , Ésteres do Colesterol/metabolismo , HDL-Colesterol/genética , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Receptores Depuradores Classe B/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA