Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 100(4): 372-387, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353882

RESUMO

ONC201 is a first-in-class imipridone compound that is in clinical trials for the treatment of high-grade gliomas and other advanced cancers. Recent studies identified that ONC201 antagonizes D2-like dopamine receptors at therapeutically relevant concentrations. In the current study, characterization of ONC201 using radioligand binding and multiple functional assays revealed that it was a full antagonist of the D2 and D3 receptors (D2R and D3R) with low micromolar potencies, similar to its potency for antiproliferative effects. Curve-shift experiments using D2R-mediated ß-arrestin recruitment and cAMP assays revealed that ONC201 exhibited a mixed form of antagonism. An operational model of allostery was used to analyze these data, which suggested that the predominant modulatory effect of ONC201 was on dopamine efficacy with little to no effect on dopamine affinity. To investigate how ONC201 binds to the D2R, we employed scanning mutagenesis coupled with a D2R-mediated calcium efflux assay. Eight residues were identified as being important for ONC201's functional antagonism of the D2R. Mutation of these residues followed by assessing ONC201 antagonism in multiple signaling assays highlighted specific residues involved in ONC201 binding. Together with computational modeling and simulation studies, our results suggest that ONC201 interacts with the D2R in a bitopic manner where the imipridone core of the molecule protrudes into the orthosteric binding site, but does not compete with dopamine, whereas a secondary phenyl ring engages an allosteric binding pocket that may be associated with negative modulation of receptor activity. SIGNIFICANCE STATEMENT: ONC201 is a novel antagonist of the D2 dopamine receptor with demonstrated efficacy in the treatment of various cancers, especially high-grade glioma. This study demonstrates that ONC201 antagonizes the D2 receptor with novel bitopic and negative allosteric mechanisms of action, which may explain its high selectivity and some of its clinical anticancer properties that are distinct from other D2 receptor antagonists widely used for the treatment of schizophrenia and other neuropsychiatric disorders.


Assuntos
Antineoplásicos/metabolismo , Antagonistas dos Receptores de Dopamina D2/metabolismo , Imidazóis/metabolismo , Piridinas/metabolismo , Pirimidinas/metabolismo , Receptores de Dopamina D2/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CHO , Cricetinae , Cricetulus , Antagonistas dos Receptores de Dopamina D2/química , Antagonistas dos Receptores de Dopamina D2/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Imidazóis/química , Imidazóis/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Piridinas/química , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Receptores de Dopamina D2/química
2.
Hypertens Res ; 44(6): 628-641, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33820956

RESUMO

Overproduction of reactive oxygen species (ROS) plays an important role in the pathogenesis of hypertension. The dopamine D5 receptor (D5R) is known to decrease ROS production, but the mechanism is not completely understood. In HEK293 cells overexpressing D5R, fenoldopam, an agonist of the two D1-like receptors, D1R and D5R, decreased the production of mitochondria-derived ROS (mito-ROS). The fenoldopam-mediated decrease in mito-ROS production was mimicked by Sp-cAMPS but blocked by Rp-cAMPS. In human renal proximal tubule cells with DRD1 gene silencing to eliminate the confounding effect of D1R, fenoldopam still decreased mito-ROS production. By contrast, Sch23390, a D1R and D5R antagonist, increased mito-ROS production in the absence of D1R, D5R is constitutively active. The fenoldopam-mediated inhibition of mito-ROS production may have been related to autophagy because fenoldopam increased the expression of the autophagy hallmark proteins, autophagy protein 5 (ATG5), and the microtubule-associated protein 1 light chain (LC)3-II. In the presence of chloroquine or spautin-1, inhibitors of autophagy, fenoldopam further increased ATG5 and LC3-II expression, indicating an important role of D5R in the positive regulation of autophagy. However, when autophagy was inhibited, fenoldopam was unable to inhibit ROS production. Indeed, the levels of these autophagy hallmark proteins were decreased in the kidney cortices of Drd5-/- mice. Moreover, ROS production was increased in mitochondria isolated from the kidney cortices of Drd5-/- mice, relative to Drd5+/+ littermates. In conclusion, D5R-mediated activation of autophagy plays a role in the D5R-mediated inhibition of mito-ROS production in the kidneys.


Assuntos
Mitocôndrias , Espécies Reativas de Oxigênio , Receptores de Dopamina D5 , Animais , Autofagia , AMP Cíclico/metabolismo , Fenoldopam , Células HEK293 , Humanos , Rim/metabolismo , Camundongos , Mitocôndrias/metabolismo , Receptores de Dopamina D5/metabolismo
3.
J Med Chem ; 63(10): 5526-5567, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32342685

RESUMO

To identify novel D3 dopamine receptor (D3R) agonists, we conducted a high-throughput screen using a ß-arrestin recruitment assay. Counterscreening of the hit compounds provided an assessment of their selectivity, efficacy, and potency. The most promising scaffold was optimized through medicinal chemistry resulting in enhanced potency and selectivity. The optimized compound, ML417 (20), potently promotes D3R-mediated ß-arrestin translocation, G protein activation, and ERK1/2 phosphorylation (pERK) while lacking activity at other dopamine receptors. Screening of ML417 against multiple G protein-coupled receptors revealed exceptional global selectivity. Molecular modeling suggests that ML417 interacts with the D3R in a unique manner, possibly explaining its remarkable selectivity. ML417 was also found to protect against neurodegeneration of dopaminergic neurons derived from iPSCs. Together with promising pharmacokinetics and toxicology profiles, these results suggest that ML417 is a novel and uniquely selective D3R agonist that may serve as both a research tool and a therapeutic lead for the treatment of neuropsychiatric disorders.


Assuntos
Agonistas de Dopamina/química , Agonistas de Dopamina/farmacologia , Descoberta de Drogas/métodos , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/química , Animais , Células CHO , Cricetulus , Agonistas de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Células Hep G2 , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Secundária de Proteína , Receptores de Dopamina D3/metabolismo
4.
Cell Rep ; 29(5): 1147-1163.e5, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665630

RESUMO

Alcohol produces both stimulant and sedative effects in humans and rodents. In humans, alcohol abuse disorder is associated with a higher stimulant and lower sedative responses to alcohol. Here, we show that this association is conserved in mice and demonstrate a causal link with another liability factor: low expression of striatal dopamine D2 receptors (D2Rs). Using transgenic mouse lines, we find that the selective loss of D2Rs on striatal medium spiny neurons enhances sensitivity to ethanol stimulation and generates resilience to ethanol sedation. These mice also display higher preference and escalation of ethanol drinking, which continues despite adverse outcomes. We find that striatal D1R activation is required for ethanol stimulation and that this signaling is enhanced in mice with low striatal D2Rs. These data demonstrate a link between two vulnerability factors for alcohol abuse and offer evidence for a mechanism in which low striatal D2Rs trigger D1R hypersensitivity, ultimately leading to compulsive-like drinking.


Assuntos
Alcoolismo/metabolismo , Corpo Estriado/metabolismo , Receptores de Dopamina D2/metabolismo , Alcoolismo/fisiopatologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Etanol/toxicidade , Deleção de Genes , Hipnóticos e Sedativos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Quinina , Receptores de Dopamina D1/metabolismo , Reflexo/efeitos dos fármacos , Transdução de Sinais
5.
Mol Pharmacol ; 94(4): 1197-1209, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30068735

RESUMO

The D1 dopamine receptor is linked to a variety of neuropsychiatric disorders and represents an attractive drug target for the enhancement of cognition in schizophrenia, Alzheimer disease, and other disorders. Positive allosteric modulators (PAMs), with their potential for greater selectivity and larger therapeutic windows, may represent a viable drug development strategy, as orthosteric D1 receptor agonists possess known clinical liabilities. We discovered two structurally distinct D1 receptor PAMs, MLS6585 and MLS1082, via a high-throughput screen of the NIH Molecular Libraries program small-molecule library. Both compounds potentiate dopamine-stimulated G protein- and ß-arrestin-mediated signaling and increase the affinity of dopamine for the D1 receptor with low micromolar potencies. Neither compound displayed any intrinsic agonist activity. Both compounds were also found to potentiate the efficacy of partial agonists. We tested maximally effective concentrations of each PAM in combination to determine if the compounds might act at separate or similar sites. In combination, MLS1082 + MLS6585 produced an additive potentiation of dopamine potency beyond that caused by either PAM alone for both ß-arrestin recruitment and cAMP accumulation, suggesting diverse sites of action. In addition, MLS6585, but not MLS1082, had additive activity with the previously described D1 receptor PAM "Compound B," suggesting that MLS1082 and Compound B may share a common binding site. A point mutation (R130Q) in the D1 receptor was found to abrogate MLS1082 activity without affecting that of MLS6585, suggesting this residue may be involved in the binding/activity of MLS1082 but not that of MLS6585. Together, MLS1082 and MLS6585 may serve as important tool compounds for the characterization of diverse allosteric sites on the D1 receptor as well as the development of optimized lead compounds for therapeutic use.


Assuntos
Regulação Alostérica/fisiologia , Sítio Alostérico/fisiologia , Receptores Dopaminérgicos/metabolismo , Animais , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Dopamina/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Transdução de Sinais/fisiologia , beta-Arrestinas/metabolismo
6.
ACS Chem Neurosci ; 6(4): 681-92, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25660762

RESUMO

The D1 dopamine receptor (D1R) has been implicated in numerous neuropsychiatric disorders, and D1R-selective ligands have potential as therapeutic agents. Previous studies have identified substituted benzazepines as D1R-selective agonists, but the in vivo effects of these compounds have not correlated well with their in vitro pharmacological activities. A series of substituted benzazepines, and structurally dissimilar D1R-selective agonists, were tested for their functional effects on D1R-mediated cAMP accumulation, D1R-promoted ß-arrestin recruitment, and D1R internalization using live cell functional assays. All compounds tested elicited an increase in the level of cAMP accumulation, albeit with a range of efficacies. However, when the compounds were evaluated for ß-arrestin recruitment, a subset of substituted benzazepines, SKF83959, SKF38393, SKF82957, SKF77434, and SKF75670, failed to activate this pathway, whereas the others showed similar activation efficacies as seen with cAMP accumulation. When tested as antagonists, the five biased compounds all inhibited dopamine-stimulated ß-arrestin recruitment. Further, D1R internalization assays revealed a corroborating pattern of activity in that the G protein-biased compounds failed to promote D1R internalization. Interestingly, the biased signaling was unique for the D1R, as the same compounds were agonists of the related D5 dopamine receptor (D5R), but revealed no signaling bias. We have identified a group of substituted benzazepine ligands that are agonists at D1R-mediated G protein signaling, but antagonists of D1R recruitment of ß-arrestin, and also devoid of agonist-induced receptor endocytosis. These data may be useful for interpreting the contrasting effects of these compounds in vitro versus in vivo, and also for the understanding of pathway-selective signaling of the D1R.


Assuntos
Arrestinas/metabolismo , Benzazepinas/farmacologia , Agonistas de Dopamina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Animais , Benzazepinas/química , Células CHO , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cricetulus , AMP Cíclico/metabolismo , Agonistas de Dopamina/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Ensaio Radioligante , Receptores de Dopamina D1/genética , Receptores de Dopamina D5/agonistas , Receptores de Dopamina D5/genética , Receptores de Dopamina D5/metabolismo , Transfecção , beta-Arrestinas
7.
Am J Physiol Renal Physiol ; 307(11): F1238-48, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25339698

RESUMO

The homeostatic control of blood pressure hinges upon the delicate balance between prohypertensinogenic and antihypertensinogenic systems. D1-like dopamine receptors [dopamine D1 and D5 receptors (D1Rs and D5Rs, respectively)] and the α1A-adrenergic receptor (α1A-AR) are expressed in the renal proximal tubule and engender opposing effects on Na(+) transport, i.e., natriuresis (via D1Rs and D5Rs) or antinatriuresis (via α1A-ARs). We tested the hypothesis that the D1R/D5R regulates the α1A-AR. D1-like dopamine receptors coimmunoprecipitated, colocalized, and cofractionated with α1A-ARs in lipid rafts in immortalized human renal proximal tubule cells. Long-term treatment with the D1R/D5R agonist fenoldopam resulted in decreased D1R and D5R expression but increased α1A-AR abundance in the plasma membrane. Short-term fenoldopam treatment stimulated the translocation of Na(+)-K(+)-ATPase from the plasma membrane to the cytosol that was partially reversed by an α1A-AR agonist, which by itself induced Na(+)-K(+)-ATPase translocation from the cytosol to the plasma membrane. The α1A-AR-specific agonist A610603 also minimized the ability of fenoldopam to inhibit Na(+)-K(+)-ATPase activity. To determine the interaction among D1Rs, D5Rs, and α1A-ARs in vivo, we used phenylephrine and A610603 to decrease Na(+) excretion in several D1-like dopamine receptor knockout mouse strains. Phenylephrine and A61603 treatment resulted in a partial reduction of urinary Na(+) excretion in wild-type mice and its abolition in D1R knockout, D5R knockout, and D1R-D5R double-knockout mice. Our results demonstrate the ability of the D1-like dopamine receptors to regulate the expression and activity of α1A-AR. Elucidating the intricacies of the interaction among these receptors is crucial for a better understanding of the crosstalk between anti- and pro-hypertensive systems.


Assuntos
Túbulos Renais Proximais/metabolismo , Receptores Adrenérgicos alfa 1/biossíntese , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/fisiologia , Animais , Biotinilação , Pressão Sanguínea/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Túbulos Renais Proximais/citologia , Camundongos , Camundongos Knockout , Receptores de Dopamina D5/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
Mol Pharmacol ; 86(1): 96-105, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24755247

RESUMO

A high-throughput screening campaign was conducted to interrogate a 380,000+ small-molecule library for novel D2 dopamine receptor modulators using a calcium mobilization assay. Active agonist compounds from the primary screen were examined for orthogonal D2 dopamine receptor signaling activities including cAMP modulation and ß-arrestin recruitment. Although the majority of the subsequently confirmed hits activated all signaling pathways tested, several compounds showed a diminished ability to stimulate ß-arrestin recruitment. One such compound (MLS1547; 5-chloro-7-[(4-pyridin-2-ylpiperazin-1-yl)methyl]quinolin-8-ol) is a highly efficacious agonist at D2 receptor-mediated G protein-linked signaling, but does not recruit ß-arrestin as demonstrated using two different assays. This compound does, however, antagonize dopamine-stimulated ß-arrestin recruitment to the D2 receptor. In an effort to investigate the chemical scaffold of MLS1547 further, we characterized a set of 24 analogs of MLS1547 with respect to their ability to inhibit cAMP accumulation or stimulate ß-arrestin recruitment. A number of the analogs were similar to MLS1547 in that they displayed agonist activity for inhibiting cAMP accumulation, but did not stimulate ß-arrestin recruitment (i.e., they were highly biased). In contrast, other analogs displayed various degrees of G protein signaling bias. These results provided the basis to use pharmacophore modeling and molecular docking analyses to build a preliminary structure-activity relationship of the functionally selective properties of this series of compounds. In summary, we have identified and characterized a novel G protein-biased agonist of the D2 dopamine receptor and identified structural features that may contribute to its biased signaling properties.


Assuntos
Arrestinas/antagonistas & inibidores , Proteínas de Ligação ao GTP/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Arrestinas/metabolismo , Células CHO , Linhagem Celular , Cricetulus , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , beta-Arrestinas
9.
J Am Soc Nephrol ; 22(1): 82-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21051739

RESUMO

Disruption of the dopamine D(5) receptor gene in mice increases BP and causes salt sensitivity. To determine the role of renal versus extrarenal D(5) receptors in BP regulation, we performed cross-renal transplantation experiments. BP was similar between wild-type mice and wild-type mice transplanted with wild-type kidneys, indicating that the transplantation procedure did not affect BP. BP was lower among D(5)(-/-) mice transplanted with wild-type kidneys than D(5)(-/-) kidneys, demonstrating that the renal D(5) receptors are important in BP control. BP was higher in wild-type mice transplanted with D(5)(-/-) kidneys than wild-type kidneys but not significantly different from syngenic transplanted D(5)(-/-) mice, indicating the importance of the kidney in the development of hypertension. On a high-salt diet, all mice with D(5)(-/-) kidneys excreted less sodium than mice with wild-type kidneys. Transplantation of a wild-type kidney into a D(5)(-/-) mouse decreased the renal expression of AT(1) receptors and Nox-2. Conversely, transplantation of a D(5)(-/-) kidney into a wild-type mouse increased the expression of both, suggesting that both renal and extrarenal factors are important in the regulation of AT(1) receptor and Nox-2 expression. These results highlight the role of renal D(5) receptors in BP homeostasis and the pathogenesis of hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/etiologia , Hipertensão/metabolismo , Rim/metabolismo , Receptores de Dopamina D5/deficiência , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Transplante de Rim , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Dopamina D5/genética , Receptores de Dopamina D5/metabolismo , Sódio/urina , Cloreto de Sódio na Dieta/farmacologia
10.
Mol Pharmacol ; 78(1): 69-80, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20395553

RESUMO

We reported previously that ethanol treatment regulates D(1) receptor phosphorylation and signaling in a protein kinase C (PKC) delta- and PKCgamma-dependent fashion by a mechanism that may involve PKC isozyme-specific interacting proteins. Using a PKC isozyme-specific coimmunoprecipitation approach coupled to mass spectrometry, we report the identification of RanBP9 and RanBP10 as novel interacting proteins for both PKCgamma and PKCdelta. Both RanBP9 and RanBP10 were found to specifically coimmunoprecipitate with both PKCgamma and PKCdelta; however, this association did not seem to mediate the ethanol regulation of the PKCs. It is noteworthy that the D(1) receptor was also found to specifically coimmunoprecipitate with RanBP9/10 from human embryonic kidney (HEK) 293T cells and with endogenous RanBP9 from rat kidney. RanBP9 and RanBP10 were also found to colocalize at the cellular level with the D(1) receptor in both kidney and brain tissue. Although overexpression of RanBP9 or RanBP10 in HEK293T cells did not seem to alter the kinase activities of either PKCdelta or PKCgamma, both RanBP proteins regulated D(1) receptor phosphorylation, signaling, and, in the case of RanBP9, expression. Specifically, overexpression of either RanBP9 or RanBP10 enhanced basal D(1) receptor phosphorylation, which was associated with attenuation of D(1) receptor-stimulated cAMP accumulation. Moreover, treatment of cells with select PKC inhibitors blocked the RanBP9/10-dependent increase in basal receptor phosphorylation, suggesting that phosphorylation of the receptor by PKC is regulated by RanBP9/10. These data support the idea that RanBP9 and RanBP10 may function as signaling integrators and dictate the efficient regulation of D(1) receptor signaling by PKCdelta and PKCgamma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteína Quinase C-delta/metabolismo , Proteína Quinase C/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Humanos , Microscopia Confocal , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Ratos
11.
J Biol Chem ; 284(49): 34103-15, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19815545

RESUMO

We investigated the regulatory effects of GRK2 on D(2) dopamine receptor signaling and found that this kinase inhibits both receptor expression and functional signaling in a phosphorylation-independent manner, apparently through different mechanisms. Overexpression of GRK2 was found to suppress receptor expression at the cell surface and enhance agonist-induced internalization, whereas short interfering RNA knockdown of endogenous GRK2 led to an increase in cell surface receptor expression and decreased agonist-mediated endocytosis. These effects were not due to GRK2-mediated phosphorylation of the D(2) receptor as a phosphorylation-null receptor mutant was regulated similarly, and overexpression of a catalytically inactive mutant of GRK2 produced the same effects. The suppression of receptor expression is correlated with constitutive association of GRK2 with the receptor complex as we found that GRK2 and several of its mutants were able to co-immunoprecipitate with the D(2) receptor. Agonist pretreatment did not enhance the ability of GRK2 to co-immunoprecipitate with the receptor. We also found that overexpression of GRK2 attenuated the functional coupling of the D(2) receptor and that this activity required the kinase activity of GRK2 but did not involve receptor phosphorylation, thus suggesting the involvement of an additional GRK2 substrate. Interestingly, we found that the suppression of functional signaling also required the G betagamma binding activity of GRK2 but did not involve the GRK2 N-terminal RH domain. Our results suggest a novel mechanism by which GRK2 negatively regulates G protein-coupled receptor signaling in a manner that is independent of receptor phosphorylation.


Assuntos
Regulação Enzimológica da Expressão Gênica , Receptores de Dopamina D2/química , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Quinase 2 de Receptor Acoplado a Proteína G , Humanos , Modelos Biológicos , Mutação , Fosforilação , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Ratos , Receptores de Dopamina D2/metabolismo , Transdução de Sinais
12.
Synapse ; 63(6): 462-75, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19217026

RESUMO

Dopaminergic signaling pathways have been extensively investigated using PET imaging, primarily with antagonist radioligands of D(2) and D(3) dopamine receptors (DARs). Recently, agonist radioligands of D(2)/D(3) DARs have begun to be developed and employed. One such agonist is (R)-2-(11)CH(3)O-N-n-propylnorapomorphine (MNPA). Here, we perform a pharmacological characterization of MNPA using recombinant D(2) and D(3) DARs expressed in HEK293 cells. MNPA was found to robustly inhibit forskolin-stimulated cAMP accumulation to the same extent as dopamine in D(2) or D(3) DAR-transfected cells, indicating that it is a full agonist at both receptors. MNPA is approximately 50-fold more potent than dopamine at the D(2) DAR, but equally potent as dopamine at the D(3) DAR. MNPA competition binding curves in membrane preparations expressing D(2) DARs revealed two binding states of high and low-affinity. In the presence of GTP, only one binding state of low affinity was observed. Direct saturation binding assays using [(3)H]MNPA revealed similar results as with the competition experiments leading to the conclusion that MNPA binds to the D(2) DAR in an agonist-specific fashion. In contrast to membrane preparations, using intact cell binding assays, only one site of low affinity was observed for MNPA and other agonists binding to the D(2) DAR. MNPA was also found to induce D(2) DAR internalization to an even greater extent than dopamine as determined using both cell surface receptor binding assays and confocal fluorescence microscopy. Taken together, our data indicate that the PET tracer, MNPA, is a full and potent agonist at both D(2) and D(3) receptors.


Assuntos
Apomorfina/análogos & derivados , Ligação Competitiva/fisiologia , Neurônios/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Apomorfina/metabolismo , Ligação Competitiva/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colforsina/farmacologia , Agonistas de Dopamina/farmacologia , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Humanos , Microscopia Confocal , Neurônios/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D3/efeitos dos fármacos
13.
J Biol Chem ; 283(52): 36441-53, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18984584

RESUMO

It is well documented that dopamine can increase or decrease the activity of the Na+,K+-ATPase (NKA, sodium pump) in an organ-specific fashion. This regulation can occur, at least partially, via receptor-mediated second messenger activation and can promote NKA insertion or removal from the plasma membrane. Using co-immunoprecipitation and mass spectrometry, we now show that, in both brain and HEK293T cells, D1 and D2 dopamine receptors (DARs) can exist in a complex with the sodium pump. To determine the impact of NKA on DAR function, biological assays were conducted with NKA and DARs co-expressed in HEK293T cells. In this system, expression of NKA dramatically decreased D1 and D2 DAR densities with a concomitant functional decrease in DAR-mediated regulation of cAMP levels. Interestingly, pharmacological inhibition of endogenous or overexpressed NKA enhanced DAR function without altering receptor number or localization. Similarly, DAR function was also augmented by small interfering RNA reduction of the endogenous NKA. These data suggest that, under basal conditions, NKA negatively regulates DAR function via protein-protein interactions. In reciprocal fashion, expression of DARs decreases endogenous NKA function in the absence of dopamine, implicating DAR proteins as regulators of NKA activity. Notably, dopamine stimulation or pertussis toxin inhibition of D2 receptor signaling did not alter NKA activity, indicating that the D2-mediated decrease in NKA function is dependent upon protein-protein interactions rather than signaling molecules. This evidence for reciprocal regulation between DARs and NKA provides a novel control mechanism for both DAR signaling and cellular ion balance.


Assuntos
Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sequência de Aminoácidos , Encéfalo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Dopamina/metabolismo , Humanos , Íons , Espectrometria de Massas/métodos , Modelos Biológicos , Dados de Sequência Molecular , Toxina Pertussis/farmacologia , Transdução de Sinais
14.
Neuropharmacology ; 54(7): 1051-61, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18367215

RESUMO

Recent reports have shown that the selective dopamine D(1)-like agonist SKF 83822 [which stimulates adenylate cyclase, but not phospholipase C] induces prominent behavioral seizures in mice, whereas its benzazepine congener SKF 83959 [which stimulates phospholipase C, but not adenylate cyclase] does not. To investigate the relative involvement of D(1) vs D(5) receptors in mediating seizures, ethological behavioral topography and cortical EEGs were recorded in D(1), D(5) and DARPP-32 knockout mice in response to a convulsant dose of SKF 83822. SKF 83822-induced behavioral and EEG seizures were gene dose-dependently abolished in D(1) knockouts. In both heterozygous and homozygous D(5) knockouts, the latency to first seizure was significantly increased and total EEG seizures were reduced relative to wild-types. The majority (60%) of homozygous DARPP-32 knockouts did not have seizures; of those having seizures (40%), the latency to first seizure was significantly increased and the number of high amplitude, high frequency polyspike EEG events was reduced. In addition, immunoblotting was performed to investigate downstream intracellular signalling mechanisms at D(1)-like receptors following challenge with SKF 83822 and SKF 83959. In wild-types administered SKF 83822, levels of ERK1/2 and GluR1 AMPA receptor phosphorylation increased two-fold in both the striatum and hippocampus; in striatal slices DARPP-32 phosphorylation at Thr34 increased five-fold relative to vehicle-treated controls. These findings indicate that D(1), and to a lesser extent D(5), receptor coupling to DARPP-32, ERK1/2 and glutamatergic signalling is involved in mediating the convulsant effects of SKF 83822.


Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores de AMPA/metabolismo , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D5/fisiologia , Convulsões/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/análogos & derivados , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Benzazepinas/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Relação Dose-Resposta a Droga , Eletroencefalografia/métodos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Receptores de Dopamina D1/genética , Receptores de Dopamina D5/genética , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/patologia , Transdução de Sinais/fisiologia , Treonina/metabolismo , Fatores de Tempo
15.
Neuropsychopharmacology ; 33(12): 2900-11, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18288091

RESUMO

Ethanol consumption potentiates dopaminergic signaling that is partially mediated by the D(1) dopamine receptor; however, the mechanism(s) underlying ethanol-dependent modulation of D(1) signaling is unclear. We now show that ethanol treatment of D(1) receptor-expressing cells decreases D(1) receptor phosphorylation and concurrently potentiates dopamine-stimulated cAMP accumulation. Protein kinase C (PKC) inhibitors mimic the effects of ethanol on D(1) receptor phosphorylation and dopamine-stimulated cAMP levels in a manner that is non-additive with ethanol treatment. Ethanol was also found to modulate specific PKC activities as demonstrated using in vitro kinase assays where ethanol treatment attenuated the activities of lipid-stimulated PKCgamma and PKCdelta in membrane fractions, but did not affect the activities of PKCalpha, PKCbeta(1), or PKCvarepsilon. Importantly, ethanol treatment potentiated D(1) receptor-mediated DARPP-32 phosphorylation in rat striatal slices, supporting the notion that ethanol enhances D(1) receptor signaling in vivo. These findings suggest that ethanol inhibits the activities of specific PKC isozymes, resulting in decreased D(1) receptor phosphorylation and enhanced dopaminergic signaling.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Etanol/farmacologia , Proteína Quinase C/antagonistas & inibidores , Receptores de Dopamina D1/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transtornos do Sistema Nervoso Induzidos por Álcool/metabolismo , Transtornos do Sistema Nervoso Induzidos por Álcool/fisiopatologia , Animais , Química Encefálica/efeitos dos fármacos , Química Encefálica/fisiologia , Linhagem Celular , Depressores do Sistema Nervoso Central/farmacologia , AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/efeitos dos fármacos , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Isoenzimas/efeitos dos fármacos , Isoenzimas/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/metabolismo , Ratos , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/fisiologia
16.
J Biol Chem ; 282(29): 21285-300, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17395585

RESUMO

As for all proteins, G protein-coupled receptors (GPCRs) undergo synthesis and maturation within the endoplasmic reticulum (ER). The mechanisms involved in the biogenesis and trafficking of GPCRs from the ER to the cell surface are poorly understood, but they may involve interactions with other proteins. We have now identified the ER chaperone protein calnexin as an interacting protein for both D(1) and D(2) dopamine receptors. These protein-protein interactions were confirmed using Western blot analysis and co-immunoprecipitation experiments. To determine the influence of calnexin on receptor expression, we conducted assays in HEK293T cells using a variety of calnexin-modifying conditions. Inhibition of glycosylation either through receptor mutations or treatments with glycosylation inhibitors partially blocks the interactions with calnexin with a resulting decrease in cell surface receptor expression. Confocal fluorescence microscopy reveals the accumulation of D(1)-green fluorescent protein and D(2)-yellow fluorescent protein receptors within internal stores following treatment with calnexin inhibitors. Overexpression of calnexin also results in a marked decrease in both D(1) and D(2) receptor expression. This is likely because of an increase in ER retention because confocal microscopy revealed intracellular clustering of dopamine receptors that were co-localized with an ER marker protein. Additionally, we show that calnexin interacts with the receptors via two distinct mechanisms, glycan-dependent and glycan-independent, which may underlie the multiple effects (ER retention and surface trafficking) of calnexin on receptor expression. Our data suggest that optimal receptor-calnexin interactions critically regulate D(1) and D(2) receptor trafficking and expression at the cell surface, a mechanism likely to be of importance for many GPCRs.


Assuntos
Calnexina/química , Regulação da Expressão Gênica , Receptores de Dopamina D1/química , Receptores de Dopamina D2/química , Calnexina/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Imunoprecipitação , Cinética , Espectrometria de Massas , Microscopia Confocal , Peptídeos/química , Polissacarídeos/metabolismo , Ligação Proteica
17.
Eur Neuropsychopharmacol ; 16(6): 437-45, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16413758

RESUMO

The role of D(1)-like [D(1), D(5)] and D(2)-like [D(2), D(3), D(4)] dopamine receptors and dopamine transduction via DARPP-32 in topographies of orofacial movement was assessed in restrained mice with congenic D(4) vs. D(5) receptor vs. DARPP-32 'knockout'. D(4) and DARPP-32 mutants evidenced no material phenotype; also, there were no alterations in topographical responsivity to either the selective D(2)-like agonist RU 24213 or the selective D(1)-like agonist SK and F 83959. In contrast, D(5) mutants evidenced an increase in spontaneous vertical jaw movements, which habituated more slowly than in wildtypes, and a decrease in horizontal jaw movements; topographical responsivity to SK and F 83959 and RU 24213 was unaltered. D(5) receptors regulate distinct topographies of vertical and horizontal jaw movement in an opposite manner. In assuming that the well-recognised role of the D(1)-like family in regulating orofacial movements involves primarily D(1) receptors, a role for their D(5) counterparts may have been overlooked.


Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Discinesia Induzida por Medicamentos/genética , Receptores de Dopamina D4/genética , Receptores de Dopamina D5/genética , Transdução de Sinais/genética , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/análogos & derivados , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Cromanos/farmacologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/deficiência , Discinesia Induzida por Medicamentos/fisiopatologia , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Dopamina D4/agonistas , Receptores de Dopamina D4/deficiência , Receptores de Dopamina D5/agonistas , Receptores de Dopamina D5/deficiência , Transdução de Sinais/efeitos dos fármacos
18.
Mol Pharmacol ; 69(3): 759-69, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16338988

RESUMO

G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate agonist-activated GPCRs, initiating their homologous desensitization. In this article, we present data showing that GRK4 constitutively phosphorylates the D1 receptor in the absence of agonist activation. This constitutive phosphorylation is mediated exclusively by the alpha isoform of GRK4; the beta, gamma, and delta isoforms are ineffective in this regard. Mutational analysis reveals that the constitutive phosphorylation mediated by GRK4alpha is restricted to the distal region of the carboxyl terminus of the receptor, specifically to residues Thr428 and Ser431. Phosphorylation of the D1 receptor by GRK4alpha results in a decrease in cAMP accumulation, an increase in receptor internalization, and a decrease in total receptor number--all of which are abolished in a D1 receptor mutant containing T428V and S431A. The increase in internalized D1 receptors induced by GRK4alpha phosphorylation is due to enhanced receptor internalization rather than retarded trafficking of newly synthesized receptors to the cell surface. The constitutive phosphorylation of the D1 receptor by GRK4alpha does not alter agonist-induced desensitization of the receptor because dopamine pretreatment produced a similar decrease in cAMP accumulation in control cells versus cells expressing GRK4alpha. These observations shift the attenuation of D1 receptor signaling from a purely agonist-driven process to one that is additionally modulated by the complement of kinases that are coexpressed in the same cell. Furthermore, our data provide direct evidence that, in contrast to current dogma, GRKs can (at least in some instances) constitutively phosphorylate GPCRs in the absence of agonist activation resulting in constitutive desensitization.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Dopamina D1/metabolismo , Sequência de Aminoácidos , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Quinase 4 de Receptor Acoplado a Proteína G , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Receptores de Dopamina D1/análise , Receptores de Dopamina D1/genética , Transfecção
19.
J Biol Chem ; 279(47): 49533-41, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15347675

RESUMO

Previously, D2 dopamine receptors (D2 DARs) have been shown to undergo G-protein-coupled receptor kinase phosphorylation in an agonist-specific fashion. We have now investigated the ability of the second messenger-activated protein kinases, protein kinase A (PKA) and protein kinase C (PKC), to mediate phosphorylation and desensitization of the D2 DAR. HEK293T cells were transiently transfected with the D2 DAR and then treated with intracellular activators and inhibitors of PKA or PKC. Treatment with agents that increase cAMP, and activate PKA, had no effect on the phosphorylation state of the D2 DAR, suggesting that PKA does not phosphorylate the D2 DAR in HEK293T cells. In contrast, cellular treatment with phorbol 12-myristate 13-acetate (PMA), a PKC activator, resulted in an approximately 3-fold increase in D2 DAR phosphorylation. The phosphorylation was specific for PKC as the PMA effect was mimicked by phorbol 12,13-dibutyrate, but not by 4alpha-phorbol 12,13-didecanoate, active and inactive, phorbol diesters, respectively. The PMA-mediated D2 DAR phosphorylation was completely blocked by co-treatment with the PKC inhibitor, bisindolylmaleimide II, and augmented by co-transfection with PKCbetaI. In contrast, PKC inhibition had no effect on agonist-promoted phosphorylation, suggesting that PKC is not involved in this response. PKC phosphorylation of the D2 DAR was found to promote receptor desensitization as reflected by a decrease in agonist potency for inhibiting cAMP accumulation. Most interestingly, PKC phosphorylation also promoted internalization of the D2 DAR through a beta-arrestin- and dynamin-dependent pathway, a response not usually associated with PKC phosphorylation of G-protein-coupled receptors. Site-directed mutagenesis experiments resulted in the identification of two domains of PKC phosphorylation sites within the third intracellular loop of the receptor. Both of these domains are involved in regulating sequestration of the D2 DAR, whereas only one domain is involved in receptor desensitization. These results indicate that PKC can mediate phosphorylation of the D2 DAR, resulting in both functional desensitization and receptor internalization.


Assuntos
Proteína Quinase C/metabolismo , Receptores de Dopamina D2/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Membrana Celular/metabolismo , Colforsina/farmacologia , AMP Cíclico/metabolismo , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Genes Dominantes , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Plasmídeos/metabolismo , Isoformas de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Acetato de Tetradecanoilforbol/farmacologia , Transfecção
20.
J Biol Chem ; 279(9): 7999-8010, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14660631

RESUMO

Homologous desensitization of D(1) dopamine receptors is thought to occur through their phosphorylation leading to arrestin association which interdicts G protein coupling. In order to identify the relevant domains of receptor phosphorylation, and to determine how this leads to arrestin association, we created a series of mutated D(1) receptor constructs. In one mutant, all of the serine/threonine residues within the 3rd cytoplasmic domain were altered (3rdTOT). A second construct was created in which only three of these serines (serines 256, 258, and 259) were mutated (3rd234). We also created four truncation mutants of the carboxyl terminus (T347, T369, T394, and T404). All of these constructs were comparable with the wild-type receptor with respect to expression and adenylyl cyclase activation. In contrast, both of the 3rd loop mutants exhibited attenuated agonist-induced receptor phosphorylation that was correlated with an impaired desensitization response. Sequential truncation of the carboxyl terminus of the receptor resulted in a sequential loss of agonist-induced phosphorylation. No phosphorylation was observed with the most severely truncated T347 mutant. Surprisingly, all of the truncated receptors exhibited normal desensitization. The ability of the receptor constructs to promote arrestin association was evaluated using arrestin-green fluorescent protein translocation assays and confocal fluorescence microscopy. The 3rd234 mutant receptor was impaired in its ability to induce arrrestin translocation, whereas the T347 mutant was comparable with wild type. Our data suggest a model in which arrestin directly associates with the activated 3rd cytoplasmic domain in an agonist-dependent fashion; however, under basal conditions, this is sterically prevented by the carboxyl terminus of the receptor. Receptor activation promotes the sequential phosphorylation of residues, first within the carboxyl terminus and then the 3rd cytoplasmic loop, thereby dissociating these domains and allowing arrestin to bind to the activated 3rd loop. Thus, the role of receptor phosphorylation is to allow access of arrestin to its receptor binding domain rather than to create an arrestin binding site per se.


Assuntos
Arrestina/metabolismo , Receptores de Dopamina D1/química , Receptores de Dopamina D1/metabolismo , Sequência de Aminoácidos , Animais , Arrestina/genética , Benzazepinas/metabolismo , Sítios de Ligação , Transporte Biológico , Biotinilação , Linhagem Celular , AMP Cíclico/biossíntese , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Microscopia Confocal , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Conformação Proteica , Ensaio Radioligante , Ratos , Receptores de Dopamina D1/genética , Proteínas Recombinantes , Relação Estrutura-Atividade , Transfecção , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA