Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS One ; 19(9): e0311212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39348343

RESUMO

Colorectal cancer (CRC) has become a significant global health concern and ranks among the leading causes of morbidity and mortality worldwide. Due to its malignant nature, current immunotherapeutic treatments are used to tackle this issue. However, not all patients respond positively to treatment, thereby limiting clinical effectiveness and requiring the identification of novel therapeutic targets to optimise current strategies. The putative ligand of Siglec-15, Sialyl-Tn (STn), is associated with tumour progression and is synthesised by the sialyltransferases ST6GALNAC1 and ST6GALNAC2. However, the deregulation of both sialyltransferases within the literature remain limited, and the involvement of microRNAs (miRNAs) in STn production require further elucidation. Here, we identified miRNAs involved in the regulation of ST6GALNAC1 via a computational approach and further analysis of miRNA binding sites were determined. In silico tools predicted miR-21, miR-30e and miR-26b to regulate the ST6GALNAC1 gene, all of which had shown significant upregulated expression in the tumour cohort. Moreover, each miRNA displayed a high binding affinity towards the seed region of ST6GALNAC1. Additionally, enrichment analysis outlined pathways associated with several cancer hallmarks, including epithelial to mesenchymal transition (EMT) and MYC targets associated with tumour progression. Furthermore, our in silico findings demonstrated that the ST6GALNAC1 expression profile was significantly downregulated in CRC tumours, and its low expression correlated with poor survival outcomes when compared with patient survival data. In comparison to its counterpart, there were no significant differences in the expression of ST6GALNAC2 between normal and malignant tissues, which was further evidenced in our immunohistochemistry analysis. Immunohistochemistry staining highlighted significantly higher expression was more prevalent in normal human tissues with regard to ST6GALNAC1. In conclusion, the integrated in silico analysis highlighted that STn production is not reliant on deregulated sialyltransferase expression in CRC, and ST6GALNAC1 expression is regulated by several oncomirs. We proposed the involvement of other sialyltransferases in the production of the STn antigen and CRC progression via the Siglec-15/Sia axis.


Assuntos
Neoplasias Colorretais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Sialiltransferases , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Feminino , Linhagem Celular Tumoral , Relevância Clínica , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Antígenos Glicosídicos Associados a Tumores , Antígenos CD
2.
ACS Omega ; 9(29): 31789-31802, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39072119

RESUMO

Glioblastoma (GB) is an aggressive brain malignancy characterized by its invasive nature. Current treatment has limited effectiveness, resulting in poor patients' prognoses. ß-Amino carbonyl (ß-AC) compounds have gained attention due to their potential anticancerous properties. In vitro assays were performed to evaluate the effects of an in-house synthesized ß-AC compound, named SHG-8, upon GB cells. Small RNA sequencing (sRNA-seq) and biocomputational analyses investigated the effects of SHG-8 upon the miRNome and its bioavailability within the human body. SHG-8 exhibited significant cytotoxicity and inhibition of cell migration and proliferation in U87MG and U251MG GB cells. GB cells treated with the compound released significant amounts of reactive oxygen species (ROS). Annexin V and acridine orange/ethidium bromide staining also demonstrated that the compound led to apoptosis. sRNA-seq revealed a shift in microRNA (miRNA) expression profiles upon SHG-8 treatment and significant upregulation of miR-3648 and downregulation of miR-7973. Real-time polymerase chain reaction (RT-qPCR) demonstrated a significant downregulation of CORO1C, an oncogene and a player in the Wnt/ß-catenin pathway. In silico analysis indicated SHG-8's potential to cross the blood-brain barrier. We concluded that SHG-8's inhibitory effects on GB cells may involve the deregulation of various miRNAs and the inhibition of CORO1C.

3.
Heliyon ; 10(2): e24286, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38268823

RESUMO

Siglecs belong to a family of immune regulatory receptors predominantly found on hematopoietic cells. They interact with Sia, resulting in the activation or inhibition of the immune response. Previous reports have suggested that the SIGLEC12 gene, which encodes the Siglec-XII protein, is expressed in the epithelial tissues and upregulated in carcinomas. However, studies deciphering the role of Siglec-XII in renal cancer (RC) are still unavailable, and here we provide insights on this question. We conducted expression analysis using the Human Protein Atlas and UALCAN databases. The impact of SIGLEC12 on RC prognosis was determined using the KM plotter, and an assessment of immune infiltration with SIGLEC12 was performed using the TIMER database. GSEA was conducted to identify the pathways affected by SIGLEC12. Finally, using GeneMania, we identified Siglec-XII interacting proteins. Our findings indicated that macrophages express SIGLEC12 in the kidney. Furthermore, we hypothesize that Siglec-XII expression might be involved in the increase of primary RC, but this effect may not be dependent on the age of the patient. In the tumour microenvironment, oncogenic pathways appeared to be upregulated by SIGLEC12. Similarly, our analysis suggested that SIGLEC12-related kidney renal papillary cell carcinomas may be more suitable for targeted immunotherapy, such as CTLA-4 and PD-1/PD-L1 inhibitors. These preliminary results suggested that high expression of SIGLEC12 is associated with poor prognosis for RC. Future studies to assess its clinical utility are necessitated.

5.
Front Immunol ; 14: 1254911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869015

RESUMO

Siglecs are well known immunotherapeutic targets in cancer. Current checkpoint inhibitors have exhibited limited efficacy, prompting a need for novel therapeutics for targets such as Siglec-15. Presently, small molecule inhibitors targeting Siglec-15 are not explored alongside characterised regulatory mechanisms involving microRNAs in CRC progression. Therefore, a small molecule inhibitor to target Siglec-15 was elucidated in vitro and microRNA mediated inhibitor effects were investigated. Our research findings demonstrated that the SHG-8 molecule exerted significant cytotoxicity on cell viability, migration, and colony formation, with an IC50 value of approximately 20µM. SHG-8 exposure induced late apoptosis in vitro in SW480 CRC cells. Notably, miR-6715b-3p was the most upregulated miRNA in high-throughput sequencing, which was also validated via RT-qPCR. MiR-6715b-3p may regulate PTTG1IP, a potential oncogene which was validated via RT-qPCR and in silico analysis. Additionally, molecular docking studies revealed SHG-8 interactions with the Siglec-15 binding pocket with the binding affinity of -5.4 kcal/mol, highlighting its role as a small molecule inhibitor. Importantly, Siglec-15 and PD-L1 are expressed on mutually exclusive cancer cell populations, suggesting the potential for combination therapies with PD-L1 antagonists.


Assuntos
Neoplasias Colorretais , MicroRNAs , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Humanos , Apoptose/genética , Antígeno B7-H1/genética , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Simulação de Acoplamento Molecular , Oncogenes , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/antagonistas & inibidores
6.
Inflammopharmacology ; 31(4): 2049-2060, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37204695

RESUMO

Cyclosporine A (CsA) is an immunosuppressant primarily used at a higher dosage in transplant medicine and autoimmune diseases with a higher success rate. At lower doses, CsA exhibits immunomodulatory properties. CsA has also been reported to inhibit breast cancer cell growth by downregulating the expression of pyruvate kinase. However, differential dose-response effects of CsA in cell growth, colonization, apoptosis, and autophagy remain largely unidentified in breast cancer cells. Herein, we showed the cell growth-inhibiting effects of CsA by preventing cell colonization and enhancing DNA damage and apoptotic index at a relatively lower concentration of 2 µM in MCF-7 breast cancer cells. However, at a higher concentration of 20 µM, CsA leads to differential expression of autophagy-related genes ATG1, ATG8, and ATG9 and apoptosis-associated markers, such as Bcl-2, Bcl-XL, Bad, and Bax, indicating a dose-response effect on differential cell death mechanisms in MCF-7 cells. This was confirmed in the protein-protein interaction network of COX-2 (PTGS2), a prime target of CsA, which had close interactions with Bcl-2, p53, EGFR, and STAT3. Furthermore, we investigated the combined effect of CsA with SHP2/PI3K-AKT inhibitors showing significant MCF-7 cell growth reduction, suggesting its potential to use as an adjuvant during breast cancer therapy.


Assuntos
Neoplasias da Mama , Ciclosporina , Humanos , Feminino , Células MCF-7 , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Autofagia
8.
Biology (Basel) ; 11(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36552226

RESUMO

The kidney is susceptible to reactive oxygen species-mediated cellular injury resulting in glomerulosclerosis, tubulointerstitial fibrosis, tubular cell apoptosis, and senescence, leading to renal failure, and is a significant cause of death worldwide. Oxidative stress-mediated inflammation is a key player in the pathophysiology of various renal injuries and diseases. Recently, flavonoids' role in alleviating kidney diseases has been reported with an inverse correlation between dietary flavonoids and kidney injuries. Flavonoids are plant polyphenols possessing several health benefits and are distributed in plants from roots to leaves, flowers, and fruits. Dietary flavonoids have potent antioxidant and free-radical scavenging properties and play essential roles in disease prevention. Flavonoids exert a nephroprotective effect by improving antioxidant status, ameliorating excessive reactive oxygen species (ROS) levels, and reducing oxidative stress, by acting as Nrf2 antioxidant response mediators. Moreover, flavonoids play essential roles in reducing chemical toxicity. Several studies have demonstrated the effects of flavonoids in reducing oxidative stress, preventing DNA damage, reducing inflammatory cytokines, and inhibiting apoptosis-mediated cell death, thereby preventing or improving kidney injuries/diseases. This review covers the recent nephroprotective effects of flavonoids against oxidative stress-mediated inflammation in the kidney and their clinical advancements in renal therapy.

9.
Semin Cancer Biol ; 86(Pt 2): 436-449, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35700938

RESUMO

Colorectal cancer (CRC) is considered the second cause of cancer death worldwide. The early diagnosis plays a key role in patient prognosis and subsequently overall survival. Similar to several types of cancer, colorectal cancer is also characterised by drug resistance and heterogeneity that contribute to its complexity -especially at advanced stages. However, despite the extensive research related to the identification of biomarkers associated to early diagnosis, accurate prognosis and the management of CRC patients, little progress has been made thus far. Therefore, the mortality rates, especially at advanced stages, remain high. A large family of chemoattractant cytokines called chemokines are known for their significant role in inflammation and immunity. Chemokines released by the different tumorous cells play a key role in increasing the complexity of the tumour's microenvironment. The current review investigates the role of chemokines and chemokine receptors in colorectal cancer and their potential as clinical molecular signatures that could be effectively used as a personalised therapeutic approach. We discussed how chemokine and chemokine receptors regulate the microenvironment and lead to heterogeneity in CRC. An important aspect of chemokines is their role in drug resistance which has been extensively discussed. This review also provides an overview of the current advances in the search for chemokines and chemokine receptors in CRC.


Assuntos
Neoplasias Colorretais , Receptores de Quimiocinas , Humanos , Detecção Precoce de Câncer , Quimiocinas , Prognóstico , Neoplasias Colorretais/genética , Microambiente Tumoral/genética
11.
FASEB Bioadv ; 3(2): 69-82, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33615152

RESUMO

Compared with our closest living evolutionary cousins, humans appear unusually prone to develop carcinomas (cancers arising from epithelia). The SIGLEC12 gene, which encodes the Siglec-XII protein expressed on epithelial cells, has several uniquely human features: a fixed homozygous missense mutation inactivating its natural ligand recognition property; a polymorphic frameshift mutation eliminating full-length protein expression in ~60%-70% of worldwide human populations; and, genomic features suggesting a negative selective sweep favoring the pseudogene state. Despite the loss of canonical sialic acid binding, Siglec-XII still recruits Shp2 and accelerates tumor growth in a mouse model. We hypothesized that dysfunctional Siglec-XII facilitates human carcinoma progression, correlating with known tumorigenic signatures of Shp2-dependent cancers. Immunohistochemistry was used to detect Siglec-XII expression on tissue microarrays. PC-3 prostate cancer cells were transfected with Siglec-XII and transcription of genes enriched with Siglec-XII was determined. Genomic SIGLEC12 status was determined for four different cancer cohorts. Finally, a dot blot analysis of human urinary epithelial cells was established to determine the Siglec-XII expressors versus non-expressors. Forced expression in a SIGLEC12 null carcinoma cell line enriched transcription of genes associated with cancer progression. While Siglec-XII was detected as expected in ~30%-40% of normal epithelia, ~80% of advanced carcinomas showed strong expression. Notably, >80% of late-stage colorectal cancers had a functional SIGLEC12 allele, correlating with overall increased mortality. Thus, advanced carcinomas are much more likely to occur in individuals whose genomes have an intact SIGLEC12 gene, likely because the encoded Siglec-XII protein recruits Shp2-related oncogenic pathways. The finding has prognostic, diagnostic, and therapeutic implications.

12.
Heliyon ; 7(1): e06041, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532651

RESUMO

Cisplatin (CDDP) is currently one of the most effective FDA-approved treatments for breast cancer. Previous studies have shown that CDDP-induced cell death in human breast cancer (MCF-7) cells is associated with disruption of calcium homeostasis. However, whether the sensitivity of breast cancer cells to cisplatin is associated with dysregulation of the expression of calcium-binding proteins (CaBPs) remains unknown. In this study, we evaluated the effect of the intracellular calcium chelator (BAPTA-AM) on viability of MCF-7 cells in the presence of toxic and sub-toxic doses of cisplatin. Furthermore, this study assessed the expression of CaBPs, calmodulin, S100A8, and S100A14 in MCF-7 cells treated with cisplatin. Cell viability was determined using MTT-based in vitro toxicity assay. Intracellular calcium imaging was done using Fluo-4 AM, a cell-permeant fluorescent calcium indicator. Expression of CaBPs was tested using real-time quantitative PCR. Exposure of cells to increasing amounts of CDDP correlated with increasing fluorescence of the intracellular calcium indicator, Fluo-4 AM. Conversely, treating cells with cisplatin significantly decreased mRNA levels of calmodulin, S100A8, and S100A14. Treatment of the cells with calcium chelator, BAPTA-AM, significantly enhanced the cytotoxic effects of sub-toxic dose of cisplatin. Our results indicated a statistically significant negative correlation between calmodulin, S100A8, and S100A14 expression and sensitivity of breast cancer cells to a sub-toxic dose of cisplatin. We propose that modulating the activity of calcium-binding proteins, calmodulin, S100A8, and S100A14, could be used to increase cisplatin efficacy, lowering its treatment dosage while maintaining its chemotherapeutic value.

13.
FEBS J ; 288(21): 6206-6225, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33251699

RESUMO

Siglecs are widely expressed on leucocytes and bind to ubiquitously presented glycans containing sialic acids (sialoglycans). Most Siglecs carry an immunoreceptor tyrosine-based inhibition motif (ITIM) and elicit an inhibitory intracellular signal upon ligand binding. A few Siglec receptors can, however, recruit immunoreceptor tyrosine-based activation motif (ITAM)-containing factors, which activate cells. The role of hypersialylation (the enhanced expression of sialoglycans) has recently been explored in cancer progression. Mechanistic studies have shown that hypersialylation on cancer cells can engage inhibitory Siglecs on the surface of immune cells and induce immunosuppression. These recent studies strongly suggest that the Siglec-sialic acid axis can act as a potential target for cancer immunotherapy. Moreover, the use of new tools and techniques is facilitating these studies. In this review, we summarise techniques used to study Siglecs, including different mouse models, monoclonal antibodies, Siglec fusion proteins, and sialoglycan arrays. Furthermore, we discuss the recent major developments in the study of Siglecs in cancer immunosuppression, tools, and techniques used in targeting the Siglec-sialic acid axis and the possibility of clinical intervention.


Assuntos
Ácido N-Acetilneuramínico/metabolismo , Neoplasias/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Humanos , Neuraminidase/metabolismo
14.
Phytother Res ; 35(4): 2185-2199, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33289235

RESUMO

Targeting cell cycle and inducing DNA damage by activating cell death pathways are considered as effective therapeutic strategy for combating breast cancer progression. Many of the naturally known small molecules target these signaling pathways and are effective against resistant and/or aggressive types of breast cancers. Here, we investigated the effect of catechol, a naturally occurring plant compound, for its specificity and chemotherapeutic efficacies in breast cancer (MCF-7 and MDA-MB-231) cells. Catechol treatment showed concentration-dependent cytotoxicity and antiproliferative growth in both MCF-7 and MDA-MB-231 cells while sparing minimal effects on noncancerous (F-180 and HK2) cells. Catechol modulated differential DNA damage effects by activating ATM/ATR pathways and showed enhanced γ-H2AX expression, as an indicator for DNA double-stranded breaks. MCF-7 cells showed G1 cell cycle arrest by regulating p21-mediated cyclin E/Cdk2 inhibition. Furthermore, activation of p53 triggered a caspase-mediated cell death mechanism by inhibiting regulatory proteins such as DNMT1, p-BRCA1, MCL-1, and PDCD6 with an increased Bax/Bcl-2 ratio. Overall, our results showed that catechol possesses favorable safety profile for noncancerous cells while specifically targeting multiple signaling cascades to inhibit proliferation in breast cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Catecóis/uso terapêutico , Dano ao DNA/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Catecóis/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Transdução de Sinais/efeitos dos fármacos
15.
Biomedicines ; 8(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823757

RESUMO

The p53 protein plays a central role in mediating immune functioning and determines the fate of the cells. Its role as a tumor suppressor, and in transcriptional regulation and cytokine activity under stress conditions, is well defined. The wild type (WT) p53 functions as a guardian for the genome, while the mutant p53 has oncogenic roles. One of the ways that p53 combats carcinogenesis is by reducing inflammation. WT p53 functions as an anti-inflammatory molecule via cross-talk activity with multiple immunological pathways, such as the major histocompatibility complex I (MHCI) associated pathway, toll-like receptors (TLRs), and immune checkpoints. Due to the multifarious roles of p53 in cancer, it is a potent target for cancer immunotherapy. Plant flavonoids have been gaining recognition over the last two decades to use as a potential therapeutic regimen in ameliorating diseases. Recent studies have shown the ability of flavonoids to suppress chronic inflammation, specifically by modulating p53 responses. Further, the anti-oxidant Keap1/Nrf2/ARE pathway could play a crucial role in mitigating oxidative stress, leading to a reduction of chronic inflammation linked to the prevention of cancer. This review aims to discuss the pharmacological properties of plant flavonoids in response to various oxidative stresses and immune dysfunctions and analyzes the cross-talk between flavonoid-rich dietary intake for potential disease prevention.

16.
Inflammopharmacology ; 27(5): 863-869, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31309484

RESUMO

The failure of mechanisms of natural anti-coagulation either due to genetic impairment or due to severe external injuries may result in a condition called thrombosis. This is believed to be the primary cause for a variety of life-threatening conditions such as: heart attack, stroke, pulmonary embolism, thrombophlebitis, and deep venous thrombosis (DVT). The growing number of these incidents requires an alternative anti-coagulant or anti-thrombotic agent that has minimal side effects and improved efficiency. For decades, plant polyphenols, especially flavonoids, were known for their vital role in preventing various diseases such as cancer. Mitigating excessive oxidative stress caused by reactive oxygen species (ROS) with anti-oxidant-rich flavonoids may reduce the risk of hyper-activation of platelets, cardiovascular diseases (CVD), pain, and thrombosis. Furthermore, flavonoids may mitigate endothelial dysfunction (ED), which generally correlates to the development of coronary artery and vascular diseases. Flavonoids also reduce the risk of atherosclerosis and atherothrombotic disease by inhibiting excessive tissue factor (TF) availability in the endothelium. Although the role of flavonoids in CVD is widely discussed, to the best of our knowledge, their role as anti-thrombotic lead has not been discussed. This review aims to focus on the biological uses of dietary flavonoids and their role in the treatment of various coagulation disorders, and may provide some potential lead to the drug discovery process in this area.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Inflamação/tratamento farmacológico , Trombose/tratamento farmacológico , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Doenças Cardiovasculares/metabolismo , Humanos , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Trombose/metabolismo
17.
J Clin Invest ; 128(11): 4912-4923, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30130255

RESUMO

First-generation immune checkpoint inhibitors, including anti-CTLA-4 and anti-programmed death 1 (anti-PD-1) antibodies, have led to major clinical progress, yet resistance frequently leads to treatment failure. Thus, new targets acting on T cells are needed. CD33-related sialic acid-binding immunoglobulin-like lectins (Siglecs) are pattern-recognition immune receptors binding to a range of sialoglycan ligands, which appear to function as self-associated molecular patterns (SAMPs) that suppress autoimmune responses. Siglecs are expressed at very low levels on normal T cells, and these receptors were not until recently considered as interesting targets on T cells for cancer immunotherapy. Here, we show an upregulation of Siglecs, including Siglec-9, on tumor-infiltrating T cells from non-small cell lung cancer (NSCLC), colorectal, and ovarian cancer patients. Siglec-9-expressing T cells coexpressed several inhibitory receptors, including PD-1. Targeting of the sialoglycan-SAMP/Siglec pathway in vitro and in vivo resulted in increased anticancer immunity. T cell expression of Siglec-9 in NSCLC patients correlated with reduced survival, and Siglec-9 polymorphisms showed association with the risk of developing lung and colorectal cancer. Our data identify the sialoglycan-SAMP/Siglec pathway as a potential target for improving T cell activation for immunotherapy.


Assuntos
Antígenos CD , Regulação Neoplásica da Expressão Gênica/imunologia , Proteínas de Neoplasias , Neoplasias , Polimorfismo Genético , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Linfócitos T , Antígenos CD/genética , Antígenos CD/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/mortalidade , Neoplasias/patologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia
18.
J Biol Chem ; 292(37): 15312-15320, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28747436

RESUMO

The immunomodulatory receptor Siglec-3/CD33 influences risk for late-onset Alzheimer's disease (LOAD), an apparently human-specific post-reproductive disease. CD33 generates two splice variants: a full-length CD33M transcript produced primarily by the "LOAD-risk" allele and a shorter CD33m isoform lacking the sialic acid-binding domain produced primarily from the "LOAD-protective" allele. An SNP that modulates CD33 splicing to favor CD33m is associated with enhanced microglial activity. Individuals expressing more protective isoform accumulate less brain ß-amyloid and have a lower LOAD risk. How the CD33m isoform increases ß-amyloid clearance remains unknown. We report that the protection by the CD33m isoform may not be conferred by what it does but, rather, from what it cannot do. Analysis of blood neutrophils and monocytes and a microglial cell line revealed that unlike CD33M, the CD33m isoform does not localize to cell surfaces; instead, it accumulates in peroxisomes. Cell stimulation and activation did not mobilize CD33m to the surface. Thus, the CD33m isoform may neither interact directly with amyloid plaques nor engage in cell-surface signaling. Rather, production and localization of CD33m in peroxisomes is a way of diminishing the amount of CD33M and enhancing ß-amyloid clearance. We confirmed intracellular localization by generating a CD33m-specific monoclonal antibody. Of note, CD33 is the only Siglec with a peroxisome-targeting sequence, and this motif emerged by convergent evolution in toothed whales, the only other mammals with a prolonged post-reproductive lifespan. The CD33 allele that protects post-reproductive individuals from LOAD may have evolved by adaptive loss-of-function, an example of the less-is-more hypothesis.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Macrófagos/metabolismo , Microglia/metabolismo , Neutrófilos/metabolismo , Polimorfismo de Nucleotídeo Único , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Alelos , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Motivos de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Humanos , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Microglia/citologia , Microglia/imunologia , Microglia/patologia , N-Formilmetionina Leucil-Fenilalanina/toxicidade , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuraminidase/metabolismo , Neuraminidase/toxicidade , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Peroxissomos/patologia , Filogenia , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico/efeitos dos fármacos , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/química , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética
19.
EMBO J ; 36(6): 751-760, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28100677

RESUMO

Paired immune receptors display near-identical extracellular ligand-binding regions but have intracellular sequences with opposing signaling functions. While inhibitory receptors dampen cellular activation by recognizing self-associated molecules, the functions of activating counterparts are less clear. Here, we studied the inhibitory receptor Siglec-11 that shows uniquely human expression in brain microglia and engages endogenous polysialic acid to suppress inflammation. We demonstrated that the human-specific pathogen Escherichia coli K1 uses its polysialic acid capsule as a molecular mimic to engage Siglec-11 and escape killing. In contrast, engagement of the activating counterpart Siglec-16 increases elimination of bacteria. Since mice do not have paired Siglec receptors, we generated a model by replacing the inhibitory domain of mouse Siglec-E with the activating module of Siglec-16. Siglec-E16 enhanced proinflammatory cytokine expression and bacterial killing in macrophages and boosted protection against intravenous bacterial challenge. These data elucidate uniquely human interactions of a pathogen with Siglecs and support the long-standing hypothesis that activating counterparts of paired immune receptors evolved as a response to pathogen molecular mimicry of host ligands for inhibitory receptors.


Assuntos
Inflamação/patologia , Lectinas/metabolismo , Proteínas de Membrana/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos/metabolismo , Animais , Citocinas/metabolismo , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/patologia , Humanos , Evasão da Resposta Imune , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Transgênicos , Viabilidade Microbiana
20.
J Biol Chem ; 292(3): 1029-1037, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27920204

RESUMO

CD33-related Siglecs are a family of proteins widely expressed on innate immune cells. Binding of sialylated glycans or other ligands triggers signals that inhibit or activate inflammation. Immunomodulation by Siglecs has been extensively studied, but relationships between structure and functions are poorly explored. Here we present new data relating to the structure and function of Siglec-E, the major CD33-related Siglec expressed on mouse neutrophils, monocytes, macrophages, and dendritic cells. We generated nine new rat monoclonal antibodies specific to mouse Siglec-E, with no cross-reactivity to Siglec-F. Although all antibodies detected Siglec-E on transfected human HEK-293T cells, only two reacted with mouse bone marrow neutrophils by flow cytometry and on spleen sections by immunohistochemistry. Moreover, whereas all antibodies recognized Siglec-E-Fc on immunoblots, binding was dependent on intact disulfide bonds and N-glycans, and only two antibodies recognized native Siglec-E within spleen lysates. Thus, we further investigated the impact of Siglec-E homodimerization. Homology-based structural modeling predicted a cysteine residue (Cys-298) in position to form a disulfide bridge between two Siglec-E polypeptides. Mutagenesis of Cys-298 confirmed its role in dimerization. In keeping with the high level of 9-O-acetylation found in mice, sialoglycan array studies indicate that this modification has complex effects on recognition by Siglec-E, in relationship to the underlying structures. However, we found no differences in phosphorylation or SHP-1 recruitment between dimeric and monomeric Siglec-E expressed on HEK293A cells. Phylogenomic analyses predicted that only some human and mouse Siglecs form disulfide-linked dimers. Notably, Siglec-9, the functionally equivalent human paralog of Siglec-E, occurs as a monomer.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Regulação da Expressão Gênica/fisiologia , Multimerização Proteica/fisiologia , Substituição de Aminoácidos , Animais , Anticorpos/química , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B/química , Antígenos de Diferenciação de Linfócitos B/genética , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Glicosilação , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Monócitos/citologia , Monócitos/metabolismo , Mutagênese , Mutação de Sentido Incorreto , Neutrófilos/citologia , Neutrófilos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Ratos , Ratos Endogâmicos Lew , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA