Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 14(3): 389-399, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634245

RESUMO

The increase in proinflammatory cytokine expression causes behavioral changes consistent with sickness behavior, and this led to the suggestion that depression might be a psychoneuroimmunological phenomenon. Here, we evaluated the effects of the pretreatment with fluoxetine (10 mg/kg, i.p.) and curcumin (0.5 mg/kg, i.p.) on the immune response elicited by the inoculation of an Aeromonas hydrophila bacterin in zebrafish. Non-pretreated but A. hydrophila-inoculated and sham-inoculated groups of fish served as controls. The social preference, locomotor, exploratory activities, and cerebral expression of il1b, il6, tnfa, and bdnf mRNA were compared among the groups. Behavioral changes characteristic of sickness behavior and a significant increase in the expression of il1b and il6 cytokines were found in fish from the immunostimulated group. The behavioral alterations caused by the inflammatory process were different between males and females, which was coincident with the increased expression of cerebral BDNF. Fluoxetine and curcumin prevented the sickness behavior induced by A. hydrophila and the increased expression of proinflammatory cytokines. Our results point to the potential of zebrafish as a translational model in studies related to neuroinflammation and demonstrate for the first time the effects of fluoxetine and curcumin on zebrafish sickness behavior.


Assuntos
Curcumina , Fluoxetina , Masculino , Animais , Feminino , Fluoxetina/farmacologia , Citocinas/metabolismo , Peixe-Zebra/metabolismo , Curcumina/farmacologia , Fator Neurotrófico Derivado do Encéfalo , Interação Social , Interleucina-6
2.
Pharmacol Rep ; 74(4): 736-744, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35852770

RESUMO

BACKGROUND: Curcumin, a polyphenol extracted from the rhizome of Curcuma longa L. (Zingiberaceae), presents neuroprotective properties and can modulate neuronal pathways related to mental disorders. However, curcumin has low bioavailability, which can compromise its use. The micronization process can reduce mean particle diameter and improve this compound's bioavailability and therapeutic potential. METHODS: We compared the behavioral (open tank test, OTT) and neurochemical (thiobarbituric acid reactive substances (TBARS) and non-protein thiols (NPSH) levels) effects of non-micronized curcumin (CUR, 10 mg/kg, ip) and micronized curcumin (MC, 10 mg/kg, ip) in adult zebrafish subjected to a 90-min acute restraint stress (ARS) protocol. RESULTS: ARS increased the time spent in the central area and the number of crossings and decreased the immobility time of the animals in the OTT. These results suggest an increase in locomotor activity and a decrease in thigmotaxis behavior. Both CUR and MC were not able to prevent these effects. Furthermore, ARS also induced oxidative damage by increasing TBARS and decreasing NPSH levels. Both CUR and MC did not prevent these effects. CONCLUSION: ARS-induced behavioral and biochemical effects were not blocked by any curcumin preparation. Therefore, we conclude that curcumin does not have acute anti-stress effects in zebrafish.


Assuntos
Curcumina , Animais , Antioxidantes/farmacologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Estresse Oxidativo , Substâncias Reativas com Ácido Tiobarbitúrico , Peixe-Zebra
3.
Inflammopharmacology ; 30(1): 327-341, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35006455

RESUMO

Curcumin presents a promising anti-inflammatory potential, but its low water-solubility and bioavailability hinder its application. In this sense, cocrystallization represents a tool for improving physicochemical properties, solubility, permeability, and bioavailability of new drug candidates. Thus, the aim of this work was to produce curcumin cocrystals (with n-acetylcysteine as coformer, which possesses anti-inflammatory and antioxidant activities), by the anti-solvent gas technique using supercritical carbon dioxide, and to test its antinociceptive and anti-inflammatory potential. The cocrystal was characterized by differential scanning calorimetry, powder X-ray diffraction and scanning electron microscopy. The cocrystal solubility and antichemotaxic activity were also assessed in vitro. Antinociceptive and anti-inflammatory activities were carried out in vivo using the acetic acid-induced abdominal writhing and carrageenan-induced paw oedema assays in mice. The results demonstrated the formation of a new crystalline structure, thereby confirming the successful formation of the cocrystal. The higher solubility of the cocrystal compared to pure curcumin was verified in acidic and neutral pH, and the cocrystal inhibited the chemotaxis of neutrophils in vitro. In vivo assays showed that cocrystal presents increased antinociceptive and anti-inflammatory potency when compared to pure curcumin, which could be related to an improvement in its bioavailability.


Assuntos
Curcumina , Acetilcisteína/farmacologia , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Cristalização/métodos , Curcumina/farmacologia , Camundongos , Solubilidade , Solventes/química
4.
Mol Neurobiol ; 56(2): 1188-1195, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29876880

RESUMO

There is accumulating evidence on the use of N-acetylcysteine (NAC) in the treatment of patients with neuropsychiatric disorders. As a multi-target drug and a glutathione precursor, NAC is a promising molecule in the management of stress-related disorders, for which there is an expanding field of research investigating novel therapies targeting oxidative pathways. The deleterious effects of chronic stress in the central nervous system are a result of glutamatergic hyperactivation, glutathione (GSH) depletion, oxidative stress, and increased inflammatory response, among others. The aim of this study was to investigate the effects of NAC in zebrafish submitted to unpredictable chronic stress (UCS). Animals were initially stressed or not for 7 days, followed by treatment with NAC (1 mg/L, 10 min) or vehicle for 7 days. UCS decreased the number of entries and time spent in the top area in the novel tank test, which indicate increased anxiety levels. It also increased reactive oxygen species (ROS) levels and lipid peroxidation (TBARS) while decreased non-protein thiols (NPSH) and superoxide dismutase (SOD) activity. NAC reversed the anxiety-like behavior and oxidative damage observed in stressed animals. Additional studies are needed to investigate the effects of this agent on glutamatergic modulation and inflammatory markers related to stress. Nevertheless, our study adds to the existing body of evidence supporting the clinical evaluation of NAC in mood disorders, anxiety, post-traumatic stress disorder, and other conditions associated with stress.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Acetilcisteína/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Ansiedade/metabolismo , Encéfalo/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Psicológico/metabolismo , Superóxido Dismutase/metabolismo , Peixe-Zebra
5.
Environ Sci Pollut Res Int ; 25(35): 35322-35329, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30341761

RESUMO

Jaboticaba Plinia peruviana (Poir.) Govaerts is a Brazilian berry that presents high levels of polyphenols, which may play a key role in preventing cytotoxic and genotoxic effects of harmful agents. Although copper is an essential micronutrient that plays an important role in organisms, high copper concentrations may trigger toxicity to animals and plants. Here, we investigated whether Plinia peruviana hydroalcoholic extract prevents copper-induced cytotoxicity in Allium cepa root cells. Five different anthocyanins and phenolic compounds were identified in Plinia peruviana extract. Importantly, the exposure to 1.53 mg/L copper for 24 h impaired mitotic index, as well as increased mitosis disturbances and triggered DNA damage. Pre-incubation with Plinia peruviana extract (0.25 g/L and 0.75 g/L) for 3 h prevented copper-induced changes in the mitotic index and reduced the number of abnormal cells. In conclusion, we suggest that Plinia peruviana peel extract has protective effects against cellular and genetic disturbances induced by copper.


Assuntos
Cobre/toxicidade , Dano ao DNA/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Myrtaceae/química , Cebolas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antocianinas/isolamento & purificação , Antocianinas/farmacologia , Brasil , Frutas/química , Índice Mitótico , Modelos Teóricos , Cebolas/citologia , Cebolas/genética , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Polifenóis/farmacologia
6.
Neurochem Res ; 36(10): 1876-86, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21603935

RESUMO

Despite the extensive knowledge about the effects of acute restraint stress (ARS) in rodents, zebrafish research is still elementary in this field, and the consequences of stress on purinergic system are unclear. Therefore, we evaluated the effects of ARS on behavior, biochemical, and molecular parameters in zebrafish brain. Animals were submitted to a 90 min ARS protocol and tested for anxiety levels, exploratory behavior, and memory performance. Furthermore, we analyzed ectonucleotidase and adenosine deaminase activities and their gene expression profile, as well as transcription of adenosine receptors. ARS increased anxiety, but did not impair locomotion or cognition. ARS significantly increased ATP hydrolysis, decreased cytosolic ADA activity, and changed the entpd and adora gene expression. In conclusion, ARS disturbed zebrafish behavior, and we hypothesize that the augmentation in adenosine-mediated signaling may be a strategy to reestablish homeostasis and normal behavior after a stressful event.


Assuntos
Comportamento Animal/fisiologia , Purinas/metabolismo , Restrição Física , Transdução de Sinais/fisiologia , Estresse Psicológico , Peixe-Zebra/fisiologia , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Masculino , Memória/fisiologia , Atividade Motora/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA