Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Front Immunol ; 15: 1380628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774866

RESUMO

Introduction: TAM receptor-mediated efferocytosis plays an important function in immune regulation and may contribute to antigen tolerance in the lungs, a site with continuous cellular turnover and generation of apoptotic cells. Some studies have identified failures in efferocytosis as a common driver of inflammation and tissue destruction in lung diseases. Our study is the first to characterize the in vivo function of the TAM receptors, Axl and MerTk, in the innate immune cell compartment, cytokine and chemokine production, as well as the alveolar macrophage (AM) phenotype in different settings in the airways and lung parenchyma. Methods: We employed MerTk and Axl defective mice to induce acute silicosis by a single exposure to crystalline silica particles (20 mg/50 µL). Although both mRNA levels of Axl and MerTk receptors were constitutively expressed by lung cells and isolated AMs, we found that MerTk was critical for maintaining lung homeostasis, whereas Axl played a role in the regulation of silica-induced inflammation. Our findings imply that MerTk and Axl differently modulated inflammatory tone via AM and neutrophil recruitment, phenotype and function by flow cytometry, and TGF-ß and CXCL1 protein levels, respectively. Finally, Axl expression was upregulated in both MerTk-/- and WT AMs, confirming its importance during inflammation. Conclusion: This study provides strong evidence that MerTk and Axl are specialized to orchestrate apoptotic cell clearance across different circumstances and may have important implications for the understanding of pulmonary inflammatory disorders as well as for the development of new approaches to therapy.


Assuntos
Receptor Tirosina Quinase Axl , Homeostase , Pulmão , Macrófagos Alveolares , Camundongos Knockout , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Silicose , c-Mer Tirosina Quinase , Animais , Camundongos , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Silicose/metabolismo , Silicose/imunologia , Silicose/patologia , Masculino
2.
PLoS Pathog ; 18(11): e1010502, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36318581

RESUMO

The atypical IκB family member Bcl3 associates with p50/NF-κB1 or p52/NF-κB2 homodimers in the nucleus, and positively or negatively modulates transcription in a context-dependent manner. In mice lacking Bcl3 globally or specifically in CD11c+ cells, we previously reported that Toxoplasma gondii infection is uniformly fatal and is associated with an impaired Th1 immune response. Since Bcl3 expression in dendritic cells (DC) is pivotal for antigen presentation and since classical DCs (cDC) are major antigen presenting cells, we investigated the role of Bcl3 specifically in cDCs in vivo by crossing Zbtb46 cre mice with Bcl3flx/flx mice. Bcl3flx/flx Zbtb46 cre mice were as susceptible to lethal T. gondii infection as total Bcl3-/- mice and generated poor Th1 immune responses. Consistent with this, compared to wildtype controls, splenic Xcr1+ Bcl3-deficient cDC1 cells were defective in presenting Ova antigen to OT-I cells both for Ova257-264 peptide and after infection with Ovalbumin-expressing T. gondii. Moreover, splenic CD4+ and CD8+ T cells from infected Bcl3flx/flx Zbtb46 cre mice exhibited decreased T. gondii-specific priming as revealed by both reduced cytokine production and reduced T. gondii-specific tetramer staining. In vitro differentiation of cDCs from bone marrow progenitors also revealed Bcl3-dependent cDC-specific antigen-presentation activity. Consistent with this, splenocyte single cell RNA seq (scRNAseq) in infected mice revealed Bcl3-dependent expression of genes involved in antigen processing in cDCs. We also identified by scRNAseq, a unique Bcl3-dependent hybrid subpopulation of Zbtb46+ DCs co-expressing the monocyte/macrophage transcription factor Lysozyme M. This subpopulation exhibited Bcl3-dependent expansion after infection. Likewise, by flow cytometry we identified two T. gondii-induced hybrid subpopulations of Bcl3-dependent cDC1 and cDC2 cells both expressing monocyte/macrophage markers, designated as icDC1 and icDC2. Together, our results indicate that Bcl3 in classical DCs is a major determinant of protective T cell responses and survival in T. gondii-infection.


Assuntos
Proteína 3 do Linfoma de Células B , Toxoplasma , Toxoplasmose , Animais , Camundongos , Linfócitos T CD8-Positivos , Células Dendríticas , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Proteína 3 do Linfoma de Células B/metabolismo
3.
Immunol Cell Biol ; 99(6): 586-595, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33525048

RESUMO

Regulatory T cells (Tregs) exert inhibitory function under various physiological conditions and adopt diverse characteristics following environmental cues. Multiple subsets of Tregs expressing master transcription factors of helper T cells such as RORγt, T-bet, Gata3 and PPARγ have been characterized, but the molecular mechanism governing the differentiation of these subsets remains largely unknown. Here we report that the atypical IκB protein family member Bcl-3 suppresses RORγt+ Treg accumulation. The suppressive effect of Bcl-3 was particularly evident in the mouse immune tolerance model of anti-CD3 therapy. Using conditional knockout mice, we illustrate that loss of Bcl-3 specifically in Tregs was sufficient to boost RORγt+ Treg formation and resistance of mice to dextran sulfate sodium-induced colitis. We further demonstrate the suppressive effect of Bcl-3 on RORγt+ Treg differentiation in vitro. Our results reveal a novel role of nuclear factor-kappa B signaling pathways in Treg subset differentiation that may have clinical implications in immunotherapy.


Assuntos
Colite , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Animais , Proteína 3 do Linfoma de Células B , Diferenciação Celular , Colite/induzido quimicamente , Fatores de Transcrição Forkhead , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Linfócitos T Reguladores , Células Th17
4.
Blood Adv ; 5(3): 745-755, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560391

RESUMO

There is a considerable body of work exploring the role of NF-κB family of transcription factors in the maturation and functions of later stage B cells; however, their role in the earlier bone marrow stages of development is less well understood despite the demonstration that NF-κB activity is present at all early stages of B-cell development. To explore the consequences of early, B cell-targeted constitutive activation of both NF-κB pathways on B-cell development, we generated mice that have either or both. NF-κB pathways constitutively activated beginning in early pro-B cells. In marked contrast to activating a single pathway, we found mice with both pathways constitutively activated displayed a profound loss of B cells, starting with early pro-B cells and peaking at the late pro-B-cell stage, at least in part as a result of increased apoptosis. This effect was found to be cell autonomous and to have striking phenotypic consequences on the secondary lymphoid organs and circulating antibody levels. This effect was also found to be temporal in nature as similar activation under a Cre expressed later in development did not result in generation of a similar phenotype. Taken together, these findings help to shed further light on the need for tight regulation of the NF-κB family of transcription factors during the various stages of B-cell development in the bone marrow.


Assuntos
NF-kappa B , Células Precursoras de Linfócitos B , Animais , Linfócitos B , Medula Óssea , Células da Medula Óssea , Camundongos
5.
PLoS Pathog ; 17(1): e1009249, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508001

RESUMO

Bcl-3 is an atypical member of the IκB family that acts in the nucleus to modulate transcription of many NF-κB targets in a highly context-dependent manner. Accordingly, complete Bcl-3-/- mice have diverse defects in both innate and adaptive immune responses; however, direct effects of Bcl-3 action in individual immune cell types have not been clearly defined. Here, we document a cell-autonomous role for Bcl-3 in CD8+ T cell differentiation during the response to lymphocytic choriomeningitis virus infection. Single-cell RNA-seq and flow cytometric analysis of virus-specific Bcl3-/- CD8+ T cells revealed that differentiation was skewed towards terminal effector cells at the expense of memory precursor effector cells (MPECs). Accordingly, Bcl3-/- CD8+ T cells exhibited reduced memory cell formation and a defective recall response. Conversely, Bcl-3-overexpression in transgenic CD8+ T cells enhanced MPEC formation but reduced effector cell differentiation. Together, our results establish Bcl-3 as an autonomous determinant of memory/terminal effector cell balance during CD8+ T cell differentiation in response to acute viral infection. Our results provide proof-of-principle for targeting Bcl-3 pharmacologically to optimize adaptive immune responses to infectious agents, cancer cells, vaccines and other stimuli that induce CD8+ T cell differentiation.


Assuntos
Proteína 3 do Linfoma de Células B/metabolismo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , NF-kappa B/imunologia , Animais , Proteína 3 do Linfoma de Células B/genética , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Transgênicos , Análise de Sequência de RNA , Análise de Célula Única
6.
Eur J Immunol ; 51(1): 197-205, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652549

RESUMO

Bcl-3 is an atypical member of the IκB family that modulates NF-κB activity in nuclei. lpr mice carry the lpr mutation in Fas, resulting in functional loss of this death receptor; they serve as models for lupus erythematosus and autoimmune lymphoproliferation syndrome (ALPS). To explore the biologic roles of Bcl-3 in this disease model, we generated BL6/lpr mice lacking Bcl-3. Unlike lpr mice on an MRL background, BL6/lpr mice present with very mild lupus- or ALPS-like phenotypes. Bcl-3 KO BL6/lpr mice, however, developed severe splenomegaly, dramatically increased numbers of double negative T cells - a hallmark of human lupus, ALPS, and MRL/lpr mice - and exhibited inflammation in multiple organs, despite low levels of autoantibodies, similar to those in BL6/lpr mice. Loss of Bcl-3 specifically in T cells exacerbated select lupus-like phenotypes, specifically organ infiltration. Mechanistically, elevated levels of Tnfα in Bcl-3 KO BL6/lpr mice may promote lupus-like phenotypes, since loss of Tnfα in these mice reversed the pathology due to loss of Bcl-3. Contrary to the inhibitory functions of Bcl-3 revealed here, this regulator has also been shown to promote inflammation in different settings. Our findings highlight the profound, yet highly context-dependent roles of Bcl-3 in the development of inflammation-associated pathology.


Assuntos
Proteína 3 do Linfoma de Células B/imunologia , Lúpus Eritematoso Sistêmico/prevenção & controle , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/prevenção & controle , Proteína 3 do Linfoma de Células B/deficiência , Proteína 3 do Linfoma de Células B/genética , Modelos Animais de Doenças , Feminino , Rim/imunologia , Rim/patologia , Fígado/imunologia , Fígado/patologia , Pulmão/imunologia , Pulmão/patologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Fenótipo , Esplenomegalia/genética , Esplenomegalia/imunologia , Esplenomegalia/prevenção & controle , Fator de Necrose Tumoral alfa/imunologia
7.
Cell Signal ; 68: 109506, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31862399

RESUMO

Proximal tubular epithelial cells (PTEC) in the S1 segment of the kidney abundantly express sodium-glucose co-transporters (SGLT) that play a critical role in whole body glucose homeostasis. We recently reported suppression of RECK (Reversion Inducing Cysteine Rich Protein with Kazal Motifs), a membrane anchored endogenous MMP inhibitor and anti-fibrotic mediator, in the kidneys of db/db mice, a model of diabetic kidney disease (DKD), as well as in high glucose (HG) treated human kidney proximal tubule cells (HK-2). We further demonstrated that empagliflozin (EMPA), an SGLT2 inhibitor, reversed these effects. Little is known regarding the mechanisms underlying RECK suppression under hyperglycemic conditions, and its rescue by EMPA. Consistent with our previous studies, HG (25 mM) suppressed RECK expression in HK-2 cells. Further mechanistic investigations revealed that HG induced superoxide and hydrogen peroxide generation, oxidative stress-dependent TRAF3IP2 upregulation, NF-κB and p38 MAPK activation, inflammatory cytokine expression (IL-1ß, IL-6, TNF-α, and MCP-1), miR-21 induction, MMP2 activation, and RECK suppression. Moreover, RECK gain-of-function inhibited HG-induced MMP2 activation and HK-2 cell migration. Similar to HG, advanced glycation end products (AGE) induced TRAF3IP2 and suppressed RECK, effects that were inhibited by EMPA. Importantly, EMPA treatment ameliorated all of these deleterious effects, and inhibited epithelial-to-mesenchymal transition (EMT) and HK-2 cell migration. Collectively, these findings indicate that hyperglycemia and associated AGE suppress RECK expression via oxidative stress/TRAF3IP2/NF-κB and p38 MAPK/miR-21 induction. Furthermore, these results suggest that interventions aimed at restoring RECK or inhibiting SGLT2 have the potential to treat kidney inflammatory response/fibrosis and nephropathy under chronic hyperglycemic conditions, such as DKD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Compostos Benzidrílicos/farmacologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Ligadas por GPI/metabolismo , Glucosídeos/farmacologia , Túbulos Renais Proximais/patologia , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antígenos de Neoplasias/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glucose/toxicidade , Produtos Finais de Glicação Avançada/toxicidade , Humanos , Peróxido de Hidrogênio/metabolismo , Mediadores da Inflamação/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Albumina Sérica Humana/toxicidade , Superóxidos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Neuroinflammation ; 16(1): 161, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362762

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS). It is firmly established that overactivation of the p65 (RelA) nuclear factor kappa B (NF-κB) transcription factor upregulates expression of inflammatory mediators in both immune and non-immune resident CNS cells and promotes inflammation during MS. In contrast to p65, NF-κB family member RelB regulates immune cell development and can limit inflammation. Although RelB expression is induced during inflammation in the CNS, its role in MS remains unknown. METHODS: To examine the role of RelB in non-immune CNS cells, we generated mice with RelB specifically deleted in astrocytes (RelBΔAST), oligodendrocytes (RelBΔOLIGO), or neural progenitor-derived cells (RelBΔNP). We used experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS, to assess the effect of RelB deletion on disease outcomes and performed analysis on the histological, cellular, and molecular level. RESULTS: Despite being a negative regulator of inflammation, conditional knockout of RelB in non-immune resident CNS cells surprisingly decreased the severity of EAE. This protective effect was recapitulated by conditional deletion of RelB in oligodendrocytes but not astrocytes. Deletion of RelB in oligodendrocytes reduced disease severity, promoted survival of mature oligodendrocytes, and correlated with increased activation of p65 NF-κB. CONCLUSIONS: These findings suggest that RelB fine tunes inflammation and cell death/survival during EAE. Importantly, our data points out the detrimental role RelB plays in controlling survival of mature oligodendrocytes, which could be explored as a viable option to treat MS in the future.


Assuntos
Encéfalo/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Oligodendroglia/metabolismo , Fator de Transcrição RelB/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/patologia , Encefalomielite Autoimune Experimental/patologia , Camundongos , NF-kappa B/metabolismo , Células-Tronco Neurais/metabolismo , Fator de Transcrição RelB/genética
9.
J Cell Physiol ; 234(12): 22242-22259, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31074012

RESUMO

Sustained inflammation and matrix metalloproteinase (MMP) activation contribute to vascular occlusive/proliferative disorders. Interleukin-17 (IL-17) is a proinflammatory cytokine that signals mainly via TRAF3 Interacting Protein 2 (TRAF3IP2), an upstream regulator of various critical transcription factors, including AP-1 and NF-κB. Reversion inducing cysteine rich protein with kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Here we investigated whether IL-17A/TRAF3IP2 signaling promotes MMP-13-dependent human aortic smooth muscle cell (SMC) proliferation and migration, and determined whether RECK overexpression blunts these responses. Indeed, IL-17A treatment induced (a) JNK, p38 MAPK, AP-1, NF-κB, and CREB activation, (b) miR-21 induction, (c) miR-27b and miR-320 inhibition, (d) MMP-13 expression and activation, (e) RECK suppression, and (f) SMC migration and proliferation, all in a TRAF3IP2-dependent manner. In fact, gain of TRAG3IP2 function, by itself, induced MMP-13 expression and activation, and RECK suppression. Furthermore, treatment with recombinant MMP-13 stimulated SMC migration in part via ERK activation. Importantly, RECK gain-of-function attenuated MMP-13 activity without affecting its mRNA or protein levels, and inhibited IL-17A- and MMP-13-induced SMC migration. These results indicate that increased MMP-13 and decreased RECK contribute to IL-17A-induced TRAF3IP2-dependent SMC migration and proliferation, and suggest that TRAF3IP2 inhibitors or RECK inducers have the potential to block the progression of neointimal thickening in hyperplastic vascular diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aorta/citologia , Movimento Celular , Proteínas Ligadas por GPI/metabolismo , Interleucina-17/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Proteínas Recombinantes/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Transdução de Sinais , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
10.
Glia ; 67(8): 1449-1461, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30957303

RESUMO

In response to brain injury or infections, astrocytes become reactive, undergo striking morphological and functional changes, and secrete and respond to a spectrum of inflammatory mediators. We asked whether reactive astrocytes also display adaptive responses during sterile IL-1ß-induced neuroinflammation, which may limit tissue injury associated with many disorders of the central nervous system. We found that astrocytes display days-to-weeks long specific tolerance of cytokine genes, which is coordinated by NF-κB family member, RelB. However, in contrast to innate immune cells, astrocytic tolerance does not involve epigenetic silencing of the cytokine genes. Establishment of tolerance depends on persistent higher levels of RelB in tolerant astrocytes and its phosphorylation on serine 472. Mechanistically, this phosphorylation prevents efficient removal of RelB from cytokine promoters by IκBα and helps to establish tolerance. Importantly, ablation of RelB from astrocytes in mice abolishes tolerance during experimental neuroinflammation in vivo.


Assuntos
Imunidade Adaptativa/fisiologia , Astrócitos/imunologia , Inflamação/metabolismo , Fator de Transcrição RelB/metabolismo , Animais , Encéfalo/imunologia , Citocinas/metabolismo , Epigênese Genética , Células HEK293 , Humanos , Tolerância Imunológica/fisiologia , Camundongos Transgênicos , Neuroimunomodulação , Fosforilação , Sirtuína 1/metabolismo , Fator de Transcrição RelB/genética
11.
J Mol Cell Cardiol ; 121: 107-123, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29981796

RESUMO

Persistent inflammation promotes development and progression of heart failure (HF). TWEAK (TNF-Related WEAK Inducer Of Apoptosis), a NF-κB- and/or AP-1-responsive proinflammatory cytokine that signals via TWEAK receptor (TWEAKR), is expressed at high levels in human and preclinical models of HF. Since the adapter molecule TRAF3IP2 (TRAF3 Interacting Protein 2) is an upstream regulator of various proinflammatory pathways, including those activated by NF-κB and AP-1, we hypothesized that targeting TRAF3IP2 inhibits TWEAK-induced proinflammatory and pro-fibrotic responses in vitro and in vivo. Consistent with the hypothesis, forced expression of TRAF3IP2 upregulated TWEAK and its receptor expression in cultured adult mouse cardiac fibroblasts (CF). Further, exogenous TWEAK upregulated TRAF3IP2 expression in a time- and dose-dependent manner, suggesting a positive-feedback regulation of TRAF3IP2 and TWEAK. TWEAK also promoted TRAF3IP2 nuclear translocation. Confirming its critical role in TWEAK signaling, silencing TRAF3IP2 inhibited TWEAK autoregulation, TWEAKR upregulation, p38 MAPK, NF-κB and AP-1 activation, inflammatory cytokine expression, MMP and TIMP1 activation, collagen expression and secretion, and importantly, proliferation and migration. Recapitulating these in vitro results, continuous infusion of TWEAK for 7 days increased systolic blood pressure (SBP), upregulated TRAF3IP2 expression, activated p38 MAPK, NF-κB and AP-1, induced the expression of multiple proinflammatory and pro-fibrotic mediators, and interstitial fibrosis in hearts of wild type mice. These proinflammatory and pro-fibrotic changes occurred in conjunction with myocardial hypertrophy and contractile dysfunction. Importantly, genetic ablation of TRAF3IP2 inhibited these TWEAK-induced adverse cardiac changes independent of increases in SBP, indicating that TRAF3IP2 plays a causal role, and thus a therapeutic target, in chronic inflammatory and fibro-proliferative diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Citocina TWEAK/genética , Insuficiência Cardíaca/genética , Inflamação/genética , Receptor de TWEAK/genética , Animais , Pressão Sanguínea/genética , Movimento Celular/genética , Proliferação de Células/genética , Fibroblastos/patologia , Regulação da Expressão Gênica/genética , Coração/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Inflamação/fisiopatologia , Camundongos , NF-kappa B/genética , Transdução de Sinais/genética , Fator de Transcrição AP-1/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
12.
Am J Physiol Heart Circ Physiol ; 314(1): H52-H64, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971844

RESUMO

Hyperglycemia-induced production of endothelin (ET)-1 is a hallmark of endothelial dysfunction in diabetes. Although the detrimental vascular effects of increased ET-1 are well known, the molecular mechanisms regulating endothelial synthesis of ET-1 in the setting of diabetes remain largely unidentified. Here, we show that adapter molecule TRAF3 interacting protein 2 (TRAF3IP2) mediates high glucose-induced ET-1 production in endothelial cells and ET-1-mediated endothelial cell inflammation. Specifically, we found that high glucose upregulated TRAF3IP2 in human aortic endothelial cells, which subsequently led to activation of JNK and IKKß. shRNA-mediated silencing of TRAF3IP2, JNK1, or IKKß abrogated high-glucose-induced ET-converting enzyme 1 expression and ET-1 production. Likewise, overexpression of TRAF3IP2, in the absence of high glucose, led to activation of JNK and IKKß as well as increased ET-1 production. Furthermore, ET-1 transcriptionally upregulated TRAF3IP2, and this upregulation was prevented by pharmacological inhibition of ET-1 receptor B using BQ-788, or inhibition of NADPH oxidase-derived reactive oxygen species using gp91ds-tat and GKT137831. Notably, we found that knockdown of TRAF3IP2 abolished ET-1-induced proinflammatory and adhesion molecule (IL-1ß, TNF-α, monocyte chemoattractant protein 1, ICAM-1, VCAM-1, and E-selectin) expression and monocyte adhesion to endothelial cells. Finally, we report that TRAF3IP2 is upregulated and colocalized with CD31, an endothelial marker, in the aorta of diabetic mice. Collectively, findings from the present study identify endothelial TRAF3IP2 as a potential new therapeutic target to suppress ET-1 production and associated vascular complications in diabetes. NEW & NOTEWORTHY This study provides the first evidence that the adapter molecule TRAF3 interacting protein 2 mediates high glucose-induced production of endothelin-1 by endothelial cells as well as endothelin-1-mediated endothelial cell inflammation. The findings presented herein suggest that TRAF3 interacting protein 2 may be an important therapeutic target in diabetic vasculopathy characterized by excess endothelin-1 production.


Assuntos
Angiopatias Diabéticas/induzido quimicamente , Células Endoteliais/efeitos dos fármacos , Endotelina-1/toxicidade , Glucose/toxicidade , Inflamação/induzido quimicamente , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Feminino , Humanos , Quinase I-kappa B/metabolismo , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos NOD , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Monócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética
13.
Cell Death Dis ; 7(12): e2508, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906182

RESUMO

Transforming growth factor beta (TGFß) signaling in breast cancer is selectively associated with pulmonary metastasis. However, the underlying mechanisms remain unclear. Here we show that Bcl-3, a member of the IκB family, serves as a critical regulator in TGFß signaling to modulate breast cancer pulmonary metastasis. Bcl-3 expression was significantly associated with metastasis-free survival in breast cancer patients. Bcl-3 deletion inhibited the migration and invasion of breast cancer cells in vitro, as well as breast cancer lung metastasis in vivo. Bcl-3 was required for the expression of downstream TGFß signaling genes that are involved in breast cancer lung metastasis. Bcl-3 knockdown enhanced the degradation of Smad3 but not Smad2 following TGFß treatment. Bcl-3 could bind to Smad3 and prevent the ubiquitination and degradation of Smad3 protein. These results indicate that Bcl-3 serves as a promising target to prevent breast tumor lung metastasis.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Pulmonares/secundário , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteína 3 do Linfoma de Células B , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Estabilidade Proteica , Transdução de Sinais/genética
14.
Atherosclerosis ; 252: 153-160, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27237075

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is a major cause of heart attack and stroke. Inflammation plays a critical role in the development of atherosclerosis. Since the cytoplasmic adaptor molecule TRAF3IP2 (TRAF3-Interacting Protein 2) plays a causal role in various autoimmune and inflammatory diseases, we hypothesized that TRAF3IP2 mediates atherosclerotic plaque development. METHODS: TRAF3IP2/ApoE double knockout (DKO) mice were generated by crossing TRAF3IP2(-/-) and ApoE(-/-) mice. ApoE(-/-) mice served as controls. Both DKO and control mice were fed a high-fat diet for 12 weeks. Plasma lipids were measured by ELISA, atherosclerosis by en face analysis of aorta and plaque cross-section measurements at the aortic valve region, plaque necrotic core area, collagen and smooth muscle cell (SMC) content by histomorphometry, and aortic gene expression by RT-qPCR. RESULTS: The plasma lipoprotein profile was not altered by TRAF3IP2 gene deletion in ApoE(-/-) mice. While total aortic plaque area was decreased in DKO female, but not male mice, the plaque necrotic area was significantly decreased in DKO mice of both genders. Plaque collagen and SMC contents were increased significantly in both female and male DKO mice compared to respective controls. Aortic expression of proinflammatory cytokine (Tumor necrosis factor α, TNFα), chemokine (Chemokine (C-X-C motif) Ligand 1, CXCL1) and adhesion molecule (Vascular cell adhesion molecule 1, VCAM1; and Intercellular adhesion molecule 1, ICAM1) gene expression were decreased in both male and female DKO mice. In addition, the male DKO mice expressed markedly reduced levels of extracellular matrix (ECM)-related genes, including TIMP1 (Tissue inhibitor of metalloproteinase 1), RECK (Reversion-Inducing-Cysteine-Rich Protein with Kazal Motifs) and ADAM17 (A Disintegrin And Metalloproteinase 17). CONCLUSIONS: TRAF3IP2 plays a causal role in atherosclerotic plaque development and vulnerability, possibly by inducing the expression of multiple proinflammatory mediators. TRAF3IP2 could be a potential therapeutic target in atherosclerotic vascular diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Placa Aterosclerótica/genética , Animais , Aterosclerose , Colágeno/metabolismo , Cruzamentos Genéticos , Matriz Extracelular/metabolismo , Feminino , Deleção de Genes , Genótipo , Inflamação , Lipoproteínas/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Necrose , Fatores Sexuais , Triglicerídeos/sangue
15.
PLoS One ; 11(1): e0146955, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26785352

RESUMO

Peripheral B lymphocyte survival requires the B cell receptor (BCR) and B cell activating factor (BAFF) binding to its receptor (BAFF-R). Deletion of the BCR, or its signal transducing chaperone Igß, leads to rapid loss of mature B cells, indicating that signals initiated at the BCR are crucial for B cell survival. BAFF or BAFF-R deficiency also significantly reduces the numbers of mature B cells despite normal BCR expression. Together, these observations indicate that continued BCR and BAFF-R signaling are essential for the survival of mature resting B cells in the periphery. Here we demonstrate that tonic BCR signals up-regulate p100 (Nfkb2) as well as Mcl-1 protein expression at a post-transcriptional level via a PI3K-dependent pathway. p100 expression is mTOR-independent, whereas Mcl-1 expression is mTOR-dependent. BAFF treatment further elevated Mcl-1 levels by an mTOR-independent pathway, while consuming p100. Accordingly, Mcl-1 induction by BAFF is abrogated in Nfkb2-/- B cells. We propose that the cumulative effects of the BCR and BAFF-R signaling pathways increase Mcl-1 levels beyond the threshold required for B cell survival.


Assuntos
Linfócitos B/citologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Subunidade p52 de NF-kappa B/genética , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Fator Ativador de Células B/farmacologia , Receptor do Fator Ativador de Células B/metabolismo , Linfócitos B/metabolismo , Sobrevivência Celular , Células Cultivadas , Camundongos , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Transdução de Sinais
16.
Cell Signal ; 27(10): 1928-38, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26148936

RESUMO

Sustained activation of the Renin-Angiotensin-Aldosterone System (RAAS) contributes to the pathogenesis of heart failure. Aldosterone (Aldo) is known to induce both myocardial hypertrophy and fibrosis through oxidative stress and proinflammatory pathways. Here we have investigated whether Aldo-mediated cardiomycocyte hypertrophy is dependent on TRAF3IP2, an upstream regulator of IKK and JNK. We also investigated whether the pro-mitogenic and pro-migratory effects of Aldo on cardiac fibroblasts are also mediated by TRAF3IP2. Aldo induced both superoxide and hydrogen peroxide in isolated adult mouse cardiomyocytes (CM), and upregulated TRAF3IP2 expression in part via the mineralocorticoid receptor and oxidative stress. Silencing TRAF3IP2 blunted Aldo-induced IKKß, p65, JNK, and c-Jun activation, IL-18, IL-6 and CT-1 upregulation, and cardiomyocyte hypertrophy. In isolated adult mouse cardiac fibroblasts (CF), Aldo stimulated TRAF3IP2-dependent IL-18 and IL-6 production, CTGF, collagen I and III expression, MMP2 activation, and proliferation and migration. These in vitro results suggest that TRAF3IP2 may play a causal role in Aldo-induced adverse cardiac remodeling in vivo, and identify TRAF3IP2 as a potential therapeutic target in hypertensive heart disease.


Assuntos
Aldosterona/fisiologia , Movimento Celular , Proliferação de Células , Fibroblastos/fisiologia , Miócitos Cardíacos/fisiologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células Cultivadas , Receptor gp130 de Citocina/metabolismo , Hipertrofia/metabolismo , Interleucina-18/fisiologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Oxirredução , Proteína-Lisina 6-Oxidase/metabolismo , Transdução de Sinais , Remodelação Ventricular
17.
Eur J Immunol ; 45(7): 1972-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25884683

RESUMO

The atypical IκB family member Bcl-3 associates with p50/NF-κB1 or p52/NF-κB2 homodimers in nuclei, thereby either positively or negatively modulating transcription in a context-dependent manner. Previously we reported that Bcl-3 was critical for host resistance to Toxoplasma gondii. Bcl-3-deficient mice succumbed within 3-5 weeks after infection, correlating with an apparently impaired Th1-type adaptive immune response. However in which cell type(s) Bcl-3 functioned to assure resistance remained unknown. We now show that Bcl-3 expression in dendritic cells is required to generate a protective Th1-type immune response and confer resistance to T. gondii. Surprisingly, mice lacking Bcl-3 in dendritic cells were as susceptible as mice globally deficient for Bcl-3. Furthermore, early innate defenses were not compromised by the absence of Bcl-3, as initial production of IL-12 by dendritic cells and IFN-γ by NK cells were preserved. However, subsequent production of IFN-γ by CD4(+) and CD8(+) T-cells was compromised when dendritic cells lacked Bcl-3, and these mice succumbed at a time when T-cell-mediated IFN-γ production was essential for host resistance. These findings demonstrate that Bcl-3 is required in dendritic cells to prime protective T-cell-mediated immunity to T. gondii.


Assuntos
Células Dendríticas/imunologia , Imunidade Celular/imunologia , Proteínas Proto-Oncogênicas/imunologia , Toxoplasmose Animal/imunologia , Fatores de Transcrição/imunologia , Animais , Proteína 3 do Linfoma de Células B , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/imunologia , Toxoplasma
18.
J Immunol ; 194(7): 3286-94, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25710910

RESUMO

IL-17 is a proinflammatory cytokine that promotes the expression of different cytokines and chemokines via the induction of gene transcription and the posttranscriptional stabilization of mRNAs. In this study, we show that IL-17 increases the half-life of the Zc3h12a mRNA via interaction of the adaptor protein CIKS with the DEAD box protein DDX3X. IL-17 stimulation promotes the formation of a complex between CIKS and DDX3X, and this interaction requires the helicase domain of DDX3X but not its ATPase activity. DDX3X knockdown decreases the IL-17-induced stability of Zc3h12a without affecting the stability of other mRNAs. IKKε, TNFR-associated factor 2, and TNFR-associated factor 5 were also required to mediate the IL-17-induced Zc3h12a stabilization. DDX3X directly binds the Zc3h12a mRNA after IL-17 stimulation. Collectively, our findings define a novel, IL-17-dependent mechanism regulating the stabilization of a selected mRNA.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica , Interleucina-17/metabolismo , Estabilidade de RNA , Ribonucleases/genética , Fatores de Transcrição/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/metabolismo , Interleucina-17/farmacologia , Complexos Multiproteicos/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 5 Associado a Receptor de TNF/metabolismo
19.
Eur J Immunol ; 45(4): 1059-1068, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616060

RESUMO

Bcl-3 is an atypical member of the IκB family. Bcl-3 functions as a cofactor of p50/NF-κB1 or p52/NF-κB2 homodimers in nuclei, where it modulates NF-κB-regulated transcription in a context-dependent way. Bcl-3 has tumorigenic potential, is critical in host defense of pathogens, and has been reported to ameliorate or exacerbate inflammation, depending on disease model. However, cell-specific functions of Bcl-3 remain largely unknown. Here, we explored the role of Bcl-3 in a contact hypersensitivity (CHS) mouse model, which depends on the interplay between keratinocytes and immune cells. Bcl-3-deficient mice exhibited an exacerbated and prolonged CHS response to oxazolone. Increased inflammation correlated with higher production of chemokines CXCL2, CXCL9, and CXCL10, and consequently increased recruitment of neutrophils and CD8(+) T cells. BM chimera experiments indicated that the ability of Bcl-3 to reduce the CHS response depended on Bcl-3 activity in radioresistant cells. Specific ablation of Bcl-3 in keratinocytes resulted in increased production of CXCL9 and CXCL10 and sustained recruitment of specifically CD8(+) T cells. These findings identify Bcl-3 as a critical player during the later stage of the CHS reaction to limit inflammation via actions in radioresistant cells, including keratinocytes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Dermatite Alérgica de Contato/imunologia , Inflamação/imunologia , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Tolerância a Radiação/imunologia , Fatores de Transcrição/metabolismo , Animais , Proteína 3 do Linfoma de Células B , Quimiocina CXCL10/biossíntese , Quimiocina CXCL2/biossíntese , Quimiocina CXCL9/biossíntese , Inflamação/induzido quimicamente , Mediadores da Inflamação , Queratinócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidade p50 de NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Oxazolona , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Transcrição Gênica
20.
Nat Struct Mol Biol ; 21(12): 1047-57, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25383670

RESUMO

Small-molecule BET inhibitors interfere with the epigenetic interactions between acetylated histones and the bromodomains of the BET family proteins, including BRD4, and they potently inhibit growth of malignant cells by targeting cancer-promoting genes. BRD4 interacts with the pause-release factor P-TEFb and has been proposed to release RNA polymerase II (Pol II) from promoter-proximal pausing. We show that BRD4 occupies widespread genomic regions in mouse cells and directly stimulates elongation of both protein-coding transcripts and noncoding enhancer RNAs (eRNAs), in a manner dependent on bromodomain function. BRD4 interacts with elongating Pol II complexes and assists Pol II in progression through hyperacetylated nucleosomes by interacting with acetylated histones via bromodomains. On active enhancers, the BET inhibitor JQ1 antagonizes BRD4-associated eRNA synthesis. Thus, BRD4 is involved in multiple steps of the transcription hierarchy, primarily by facilitating transcript elongation both at enhancers and on gene bodies independently of P-TEFb.


Assuntos
Histonas/metabolismo , Proteínas Nucleares/metabolismo , RNA/genética , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Acetilação , Animais , Elementos Facilitadores Genéticos , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Proteínas Nucleares/análise , Proteínas Nucleares/antagonistas & inibidores , Nucleossomos/genética , Nucleossomos/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Mapas de Interação de Proteínas , RNA Polimerase II/metabolismo , RNA não Traduzido/genética , Fatores de Transcrição/análise , Fatores de Transcrição/antagonistas & inibidores , Iniciação da Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA