RESUMO
In vivo genome correction holds promise for generating durable disease cures; yet, effective stem cell editing remains challenging. In this work, we demonstrate that optimized lung-targeting lipid nanoparticles (LNPs) enable high levels of genome editing in stem cells, yielding durable responses. Intravenously administered gene-editing LNPs in activatable tdTomato mice achieved >70% lung stem cell editing, sustaining tdTomato expression in >80% of lung epithelial cells for 660 days. Addressing cystic fibrosis (CF), NG-ABE8e messenger RNA (mRNA)-sgR553X LNPs mediated >95% cystic fibrosis transmembrane conductance regulator (CFTR) DNA correction, restored CFTR function in primary patient-derived bronchial epithelial cells equivalent to Trikafta for F508del, corrected intestinal organoids and corrected R553X nonsense mutations in 50% of lung stem cells in CF mice. These findings introduce LNP-enabled tissue stem cell editing for disease-modifying genome correction.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Edição de Genes , Lipossomos , Pulmão , Nanopartículas , Células-Tronco , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas , Fibrose Cística/terapia , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Terapia Genética/métodos , Pulmão/metabolismo , Organoides , Células-Tronco/metabolismoRESUMO
Therapeutic genome editing of haematopoietic stem cells (HSCs) would provide long-lasting treatments for multiple diseases. However, the in vivo delivery of genetic medicines to HSCs remains challenging, especially in diseased and malignant settings. Here we report on a series of bone-marrow-homing lipid nanoparticles that deliver mRNA to a broad group of at least 14 unique cell types in the bone marrow, including healthy and diseased HSCs, leukaemic stem cells, B cells, T cells, macrophages and leukaemia cells. CRISPR/Cas and base editing is achieved in a mouse model expressing human sickle cell disease phenotypes for potential foetal haemoglobin reactivation and conversion from sickle to non-sickle alleles. Bone-marrow-homing lipid nanoparticles were also able to achieve Cre-recombinase-mediated genetic deletion in bone-marrow-engrafted leukaemic stem cells and leukaemia cells. We show evidence that diverse cell types in the bone marrow niche can be edited using bone-marrow-homing lipid nanoparticles.
Assuntos
Edição de Genes , Células-Tronco Hematopoéticas , Nanopartículas , Animais , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Nanopartículas/química , Camundongos , Humanos , Lipídeos/química , Sistemas CRISPR-Cas , Medula Óssea/metabolismo , Medula Óssea/patologia , LipossomosRESUMO
Genetic medicines have the potential to treat various diseases; however, certain ailments including inflammatory diseases and cancer would benefit from control over extracellular localization of therapeutic proteins. A critical gap therefore remains the need to develop and incorporate methodologies that allow for posttranslational control over expression dynamics, localization, and stability of nucleic acid-generated protein therapeutics. To address this, we explored how the body's endogenous machinery controls protein localization through signal peptides (SPs), including how these motifs could be incorporated modularly into therapeutics. SPs serve as a virtual zip code for mRNA transcripts that direct the cell where to send completed proteins within the cell and the body. Utilizing this signaling biology, we incorporated secretory SP sequences upstream of mRNA transcripts coding for reporter, natural, and therapeutic proteins to induce secretion of the proteins into systemic circulation. SP sequences generated secretion of various engineered proteins into the bloodstream following intravenous, intramuscular, and subcutaneous SP mRNA delivery by lipid, polymer, and ionizable phospholipid delivery carriers. SP-engineered etanercept/TNF-α inhibitor proteins demonstrated therapeutic efficacy in an imiquimod-induced psoriasis model by reducing hyperkeratosis and inflammation. An SP-engineered anti-PD-L1 construct mediated mRNA encoded proteins with longer serum half-lives that reduced tumor burden and extended survival in MC38 and B16F10 cancer models. The modular nature of SP platform should enable intracellular and extracellular localization control of various functional proteins for diverse therapeutic applications.
Assuntos
Dermatite , Melanoma , Psoríase , Humanos , Animais , Melanoma/tratamento farmacológico , Melanoma/genética , Psoríase/tratamento farmacológico , Psoríase/genética , Inflamação/patologia , Sinais Direcionadores de Proteínas , RNA Mensageiro/genética , Modelos Animais de DoençasRESUMO
Approximately 10% of Cystic Fibrosis (CF) patients, particularly those with CF transmembrane conductance regulator (CFTR) gene nonsense mutations, lack effective treatments. The potential of gene correction therapy through delivery of the CRISPR/Cas system to CF-relevant organs/cells is hindered by the lack of efficient genome editor delivery carriers. Herein, we report improved Lung Selective Organ Targeting Lipid Nanoparticles (SORT LNPs) for efficient delivery of Cas9 mRNA, sgRNA, and donor ssDNA templates, enabling precise homology-directed repair-mediated gene correction in CF models. Optimized Lung SORT LNPs deliver mRNA to lung basal cells in Ai9 reporter mice. SORT LNP treatment successfully corrected the CFTR mutations in homozygous G542X mice and in patient-derived human bronchial epithelial cells with homozygous F508del mutations, leading to the restoration of CFTR protein expression and chloride transport function. This proof-of-concept study will contribute to accelerating the clinical development of mRNA LNPs for CF treatment through CRISPR/Cas gene correction.
Assuntos
Fibrose Cística , Humanos , Camundongos , Animais , Fibrose Cística/terapia , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Pulmão/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/uso terapêuticoRESUMO
Lipid nanoparticles (LNPs) represent the most clinically advanced nonviral mRNA delivery vehicles; however, the full potential of the LNP platform is greatly hampered by inadequate endosomal escape capability. Herein, we rationally introduce a disulfide bond-bridged ester linker to modularly synthesize a library of 96 linker-degradable ionizable lipids (LDILs) for improved mRNA delivery in vivo. The top-performing LDILs are composed of one 4A3 amino headgroup, four disulfide bond-bridged linkers, and four 10-carbon tail chains, whose unique GSH-responsive cone-shaped architectures endow optimized 4A3-SCC-10 and 4A3-SCC-PH lipids with superior endosomal escape and rapid mRNA release abilities, outperforming their parent lipids 4A3-SC-10/PH without a disulfide bond and control lipids 4A3-SSC-10/PH with a disulfide bond in the tail. Notably, compared to DLin-MC3-DMA via systematic administration, 4A3-SCC-10- and 4A3-SCC-PH-formulated LNPs significantly improved mRNA delivery in livers by 87-fold and 176-fold, respectively. Moreover, 4A3-SCC-PH LNPs enabled the highly efficient gene editing of 99% hepatocytes at a low Cre mRNA dose in tdTomato mice following intravenous administration. Meanwhile, 4A3-SCC-PH LNPs were able to selectively deliver firefly luciferase mRNA and facilitate luciferase expression in tumor cells after intraperitoneal injection, further improving cancer metastasis delineation and surgery via bioluminescence imaging. We envision that the chemistry adopted here can be further extended to develop new biodegradable ionizable lipids for broad applications such as gene editing and cancer immunotherapy.
Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , RNA Mensageiro/metabolismo , Lipídeos/química , Sistemas de Liberação de Medicamentos , Fígado/metabolismo , Nanopartículas/química , Dissulfetos/metabolismo , RNA Interferente Pequeno/genética , Neoplasias/metabolismoRESUMO
Chimeric Antigen Receptor (CAR) T cell immunotherapy is revolutionizing treatment for patients suffering from B-cell lymphoma (BL). However, the current method of CAR T cell production is complicated and expensive, requiring collection of patient blood to enrich the T cell population, ex vivo engineering/activation, and quality assessment before the patient can receive the treatment. Herein we leverage Spleen Selective ORgan Targeted (SORT) Lipid Nanoparticles (LNPs) to produce CAR T cells in situ and bypass the extensive and laborious process currently used. Optimized Spleen SORT LNPs containing 10 % 18 : 1 PA transfected CD3+, CD8+, and CD4+ T cells in wild-type mice. Spleen SORT LNPs delivered Cre recombinase mRNA and CAR encoding mRNA to T cells in reporter mice and in a lymphoreplete B cell lymphoma model (respectively) after intravenous injection without the need for active targeting ligands. Moreover, in situ CAR T cells increased the overall survival of mice with a less aggressive form of B cell lymphoma. In addition, in situ transfected CAR T cells reduced tumor metastasis to the liver by increasing tumor infiltrating lymphocytes. Overall, these results offer a promising alternative method for CAR T cell production with pre-clinical potential to treat hematological malignancies.
Assuntos
Linfoma de Células B , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Baço , Linhagem Celular Tumoral , Linfoma de Células B/tratamento farmacológico , RNA MensageiroRESUMO
BACKGROUND AND AIMS: The liver is remarkably regenerative and can completely recover even when 80% of its mass is surgically removed. Identification of secreted factors that regulate liver growth would help us understand how organ size and regeneration are controlled but also provide candidate targets to promote regeneration or impair cancer growth. APPROACH AND RESULTS: To enrich for secreted factors that regulate growth control, we induced massive liver overgrowth with either YAP or MYC . Differentially expressed secreted factors were identified in these livers using transcriptomic analysis. To rank candidates by functionality, we performed in vivo CRISPR screening using the Fah knockout model of tyrosinemia. We identified secreted phosphoprotein-2 (SPP2) as a secreted factor that negatively regulates regeneration. Spp2 -deficient mice showed increased survival after acetaminophen poisoning and reduced fibrosis after repeated carbon tetrachloride injections. We examined the impact of SPP2 on bone morphogenetic protein signaling in liver cells and found that SPP2 antagonized bone morphogenetic protein signaling in vitro and in vivo. We also identified cell-surface receptors that interact with SPP2 using a proximity biotinylation assay coupled with mass spectrometry. We showed that SPP2's interactions with integrin family members are in part responsible for some of the regeneration phenotypes. CONCLUSIONS: Using an in vivo CRISPR screening system, we identified SPP2 as a secreted factor that negatively regulates liver regeneration. This study provides ways to identify, validate, and characterize secreted factors in vivo.
Assuntos
Regeneração Hepática , Neoplasias , Camundongos , Animais , Fígado/metabolismo , Hepatócitos/metabolismo , Transdução de SinaisRESUMO
Within the field of lipid nanoparticles (LNPs) for RNA delivery, the focus has been mainly placed on organ level delivery, which can mask cellular level effects consequential to therapeutic applications. Here, we studied a pair of LNPs with similar physical properties and discovered how the chemistry of the ionizable amino lipid can control the endogenous LNP identity, affecting cellular uptake in the liver and altering therapeutic outcomes in a model of liver cancer. Although most LNPs accumulate in the liver after intravenous administration (suggesting that liver delivery is straightforward), we observed an unexpected behavior when comparing two similar LNP formulations (5A2-SC8 and 3A5-SC14 LNPs) that resulted in distinct RNA delivery within the organ. Despite both LNPs possessing similar physical properties, ability to silence gene expression in vitro, strong accumulation within the liver, and a shared pKa of 6.5, only 5A2-SC8 LNPs were able to functionally deliver RNA to hepatocytes. Factor VII (FVII) activity was reduced by 87%, with 5A2-SC8 LNPs carrying FVII siRNA (siFVII), while 3A5-SC14 LNPs carrying siFVII produced baseline FVII activity levels comparable to the nontreatment control at a dosage of 0.5 mg/kg. Protein corona analysis indicated that 5A2-SC8 LNPs bind apolipoprotein E (ApoE), which can drive LDL-R receptor-mediated endocytosis in hepatocytes. In contrast, the surface of 3A5-SC14 LNPs was enriched in albumin but depleted in ApoE, which likely led to Kupffer cell delivery and detargeting of hepatocytes. In an aggressive MYC-driven liver cancer model relevant to hepatocytes, 5A2-SC8 LNPs carrying let-7g miRNA were able to significantly extend survival up to 121 days. Since disease targets exist in an organ- and cell-specific manner, the clinical development of RNA LNP therapeutics will require an improved understanding of LNP cellular tropism within organs. The results from our work illustrate the importance of understanding the cellular localization of RNA delivery and incorporating further checkpoints when choosing nanoparticles beyond biochemical and physical characterization, as small changes in the chemical composition of LNPs can have an impact on both the biofate of LNPs and therapeutic outcomes.
Assuntos
Neoplasias Hepáticas , Nanopartículas , Humanos , Lipídeos/química , Nanopartículas/química , RNA Interferente Pequeno , Apolipoproteínas E , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Resultado do TratamentoRESUMO
Genome editing holds great potential for cancer treatment due to the ability to precisely inactivate or repair cancer-related genes. However, delivery of CRISPR/Cas to solid tumours for efficient cancer therapy remains challenging. Here we targeted tumour tissue mechanics via a multiplexed dendrimer lipid nanoparticle (LNP) approach involving co-delivery of focal adhesion kinase (FAK) siRNA, Cas9 mRNA and sgRNA (siFAK + CRISPR-LNPs) to enable tumour delivery and enhance gene-editing efficacy. We show that gene editing was enhanced >10-fold in tumour spheroids due to increased cellular uptake and tumour penetration of nanoparticles mediated by FAK-knockdown. siFAK + CRISPR-PD-L1-LNPs reduced extracellular matrix stiffness and efficiently disrupted PD-L1 expression by CRISPR/Cas gene editing, which significantly inhibited tumour growth and metastasis in four mouse models of cancer. Overall, we provide evidence that modulating the stiffness of tumour tissue can enhance gene editing in tumours, which offers a new strategy for synergistic LNPs and other nanoparticle systems to treat cancer using gene editing.
Assuntos
Edição de Genes , Neoplasias , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas de Transferência de Genes , Lipossomos , Camundongos , Nanopartículas , Neoplasias/genética , Neoplasias/terapiaRESUMO
Polymers represent a promising therapeutic platform for extrahepatic messenger RNA (mRNA) delivery but are hampered by low in vivo efficacy due to polyplex serum instability and inadequate endosomal escape following systemic administration. Here, we report the rational design and combinatorial synthesis of zwitterionic phospholipidated polymers (ZPPs) via cationic polymer postmodification by alkylated dioxaphospholane oxides to deliver mRNA to spleen and lymph nodes in vivo. This modular postmodification approach readily produces tunable zwitterionic species for serum resistance and introduces alkyl chains simultaneously to enhance endosomal escape, thereby transforming deficient cationic polymers to efficacious zwitterionic mRNA carriers without the need to elaborately synthesize functional monomers. ZPPs mediated up to 39â¯500-fold higher protein expression than their parent cationic counterparts in vitro and enabled efficacious mRNA delivery selectively in spleen and lymph nodes following intravenous administration in vivo. This zwitterionic phospholipidation methodology provides a versatile and generalizable postmodification strategy to introduce zwitterions into the side chains of cationic polymers, extending the utility of cationic polymer families for precise mRNA delivery and demonstrating substantial potential for immunotherapeutic applications.
Assuntos
Linfonodos/metabolismo , Fosfolipídeos/química , Polímeros/química , RNA Mensageiro/metabolismo , Baço/metabolismo , Animais , Cátions/química , Endossomos/metabolismo , Técnicas de Transferência de Genes , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/químicaRESUMO
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein gene editing is poised to transform the treatment of genetic diseases. However, limited progress has been made toward precise editing of DNA via homology-directed repair (HDR) that requires careful orchestration of complex steps. Herein, dendrimer-based lipid nanoparticles (dLNPs) are engineered to co-encapsulate and deliver multiple components for in vivo HDR correction. BFP/GFP switchable HEK293 cells with a single Y66H amino acid mutation are employed to assess HDR-mediated gene editing following simultaneous, one-pot delivery of Cas9 mRNA, single-guide RNA, and donor DNA. Molar ratios of individual LNP components and weight ratios of the three nucleic acids are systematically optimized to increase HDR efficiency. Using flow cytometry, fluorescence imaging, and DNA sequencing to quantify editing, optimized 4A3-SC8 dLNPs edit >91% of all cells with 56% HDR efficiency in vitro and >20% HDR efficiency in xenograft tumors in vivo. Due to the all-in-one simplicity and high efficacy, the developed dLNPs offer a promising route toward the gene correction of disease-causing mutations.
Assuntos
Dendrímeros/química , Lipossomos/química , Nanopartículas/química , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas , DNA/metabolismo , Edição de Genes , Células HEK293 , Humanos , Técnicas In Vitro , Camundongos Nus , Mutação , RNA Guia de Cinetoplastídeos/metabolismo , Reparo de DNA por RecombinaçãoRESUMO
To control viral infection, vertebrates rely on both inducible interferon responses and less well-characterized cell-intrinsic responses composed of "at the ready" antiviral effector proteins. Here, we show that E3 ubiquitin ligase TRIM7 is a cell-intrinsic antiviral effector that restricts multiple human enteroviruses by targeting viral 2BC, a membrane remodeling protein, for ubiquitination and proteasome-dependent degradation. Selective pressure exerted by TRIM7 results in emergence of a TRIM7-resistant coxsackievirus with a single point mutation in the viral 2C ATPase/helicase. In cultured cells, the mutation helps the virus evade TRIM7 but impairs optimal viral replication, and this correlates with a hyperactive and structurally plastic 2C ATPase. Unexpectedly, the TRIM7-resistant virus has a replication advantage in mice and causes lethal pancreatitis. These findings reveal a unique mechanism for targeting enterovirus replication and provide molecular insight into the benefits and trade-offs of viral evolution imposed by a host restriction factor.
Assuntos
Enterovirus/fisiologia , Enterovirus/patogenicidade , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Feminino , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Mutação/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , RNA Viral/metabolismo , Ubiquitina/metabolismo , Proteínas Virais/genéticaRESUMO
Polyethyleneimine (PEI) has been extensively investigated as an efficient carrier for nucleic acid delivery. Yet, it suffers from a high toxicity profile that hinders clinical translation. Fluorination has proven to be a valid approach to reduce the cytotoxicity of PEI and improve the in vitro siRNA delivery potency. Hydrophobicity and lipophobicity can be controllably introduced into the side chains of PEI. However, the effect of fluorination on siRNA delivery in vivo, particularly the biodistribution of siRNA polyplex nanoparticles with fluorinated PEIs, has not been extensively explored. Here, we introduce two series of fluorinated PEIs via amidation with ethyl trifluoroacetate and perfluorobutyryl chloride. Fluorination substantially improved the performance of PEI for siRNA delivery by reducing the cytotoxicity to MDA-MB-231 cells. Importantly, fluorinated PEI enabled the major accumulation of siRNA polyplex nanoparticles in the liver while non-fluorinated PEI delivered siRNA nanoparticles mainly to the lungs after intravenous administration to mice. It is envisioned that fluorination may be an important general strategy for lowering toxicity of cationic polymers, and that the fluorination-induced alteration of biodistribution may be applicable for improved delivery to different organs. Graphical abstract.
Assuntos
Halogenação , Polietilenoimina , Animais , Linhagem Celular Tumoral , Fígado/metabolismo , Camundongos , Polietilenoimina/toxicidade , RNA Interferente Pequeno , Distribuição TecidualRESUMO
CRISPR/Cas9-based genome editing has quickly emerged as a powerful breakthrough technology for use in diverse settings across biomedical research and therapeutic development. Recent efforts toward understanding gene modification methods in vitro have led to substantial improvements in ex vivo genome editing efficiency. Because disease targets for genomic correction are often localized in specific organs, realization of the full potential of genomic medicines will require delivery of CRISPR/Cas9 systems targeting specific tissues and cells directly in vivo. In this Perspective, we focus on progress toward in vivo delivery of CRISPR/Cas components. Viral and nonviral delivery systems are both promising for gene editing in diverse tissues via local injection and systemic injection. We describe the various viral vectors and synthetic nonviral materials used for in vivo gene editing and applications to research and therapeutic models, and summarize opportunities and progress to date for both methods. We also discuss challenges for viral delivery, including overcoming limited packaging capacity, immunogenicity associated with multiple dosing, and the potential for off-target effects, and nonviral delivery, including efforts to increase efficacy and to expand utility of nonviral carriers for use in extrahepatic tissues and cancer. Looking ahead, additional advances in the safety and efficiency of viral and nonviral delivery systems for tissue- and cell-type-specific gene editing will be required to enable broad clinical translation. We provide a summary of current delivery systems used for in vivo genome editing, organized with respect to route of administration, and highlight immediate opportunities for biomedical research and applications. Furthermore, we discuss current challenges for in vivo delivery of CRISPR/Cas9 systems to guide the development of future therapies.
Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Sistemas CRISPR-Cas/genética , Técnicas de Transferência de Genes , Terapia GenéticaRESUMO
mRNA-based therapeutics have emerged as a promising approach to treat cancer. However, creation of theranostic strategies to both deliver mRNA and simultaneously detect cancer is an important unmet goal. Here, we report the development of theranostic dendrimer-based lipid nanoparticle (DLNP) system containing PEGylated BODIPY dyes (PBD) for mRNA delivery and near-infrared (NIR) imaging in vitro and in vivo. DLNPs formulated with a pH-responsive PBD-lipid produced 5- to 35-fold more functional protein than control DLNPs formulated with traditional PEG-lipid in vitro and enabled higher mRNA delivery potency in vivo at a low dose of 0.1 mg kg-1 when formulated with a PBD-lipid containing a BODIPY core, indole linker, and PEG length between 1000 and 5000 g/mol. Moreover, we found the intensity of mRNA expression in the liver correlated with the pKa of DLNPs, indicating that DLNPs with a pKa close to 6.3 could generally produce more protein in livers. Notably, 4A3-SC8&PEG2k5d formulated DLNPs successfully mediated mRNA expression in tumors and simultaneously illuminated tumors via pH-responsive NIR imaging. The described theranostic lipid nanoparticles that combine mRNA delivery and NIR imaging hold promise as an applicable future approach to simultaneously detect and treat cancer.
Assuntos
Dendrímeros , Nanopartículas , Neoplasias , Compostos de Boro , Linhagem Celular Tumoral , Corantes/uso terapêutico , Dendrímeros/uso terapêutico , Humanos , Lipídeos/uso terapêutico , Neoplasias/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Medicina de Precisão , RNA Mensageiro/uso terapêutico , Nanomedicina TeranósticaRESUMO
CRISPR-Cas9 has emerged as a powerful technology that relies on Cas9/sgRNA ribonucleoprotein complexes (RNPs) to target and edit DNA. However, many therapeutic targets cannot currently be accessed due to the lack of carriers that can deliver RNPs systemically. Here, we report a generalizable methodology that allows engineering of modified lipid nanoparticles to efficiently deliver RNPs into cells and edit tissues including muscle, brain, liver, and lungs. Intravenous injection facilitated tissue-specific, multiplexed editing of six genes in mouse lungs. High carrier potency was leveraged to create organ-specific cancer models in livers and lungs of mice though facile knockout of multiple genes. The developed carriers were also able to deliver RNPs to restore dystrophin expression in DMD mice and significantly decrease serum PCSK9 level in C57BL/6 mice. Application of this generalizable strategy will facilitate broad nanoparticle development for a variety of disease targets amenable to protein delivery and precise gene correction approaches.
Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Nanopartículas/química , Especificidade de Órgãos/genética , Ribonucleoproteínas/metabolismo , Animais , Cátions , DNA de Neoplasias/isolamento & purificação , Distrofina/genética , Células HeLa , Humanos , Lipídeos/química , Camundongos Endogâmicos C57BLRESUMO
In this work, a series of linear-dendritic poly(ethylene glycol) (PEG) lipids (PEG-GnCm) were synthesized through a strategy using sequential aza- and sulfa-Michael addition reactions. The effect of modulating the hydrophobic domain of linear-dendritic PEG lipids was systematically investigated for in vitro and in vivo small RNA delivery as the surface-stabilizing component of 5A2-SC8 dendrimer lipid-based nanoparticles (DLNPs). The lipid alkyl lengths (C8, C12, and C16) and dendrimer generations (G1, G2, and G3) were altered to create PEG-GnCm with different physical properties and anchoring potential. The tail chemical structure of PEG-GnCm did not affect the formulation of 5A2-SC8 DLNPs, including the nanoparticle size, RNA encapsulation, and stability. However, the tail chemical structure did dramatically affect the RNA delivery efficacy of the formed 5A2-SC8 DLNPs with different PEG-GnCm. First-generation PEG lipids (PEG-G1C8, PEG-G1C12, and PEG-G1C16) and a second-generation PEG lipid (PEG-G2C8) formed 5A2-SC8 DLNPs that could deliver siRNAs effectively in vitro and in vivo. 5A2-SC8 DLNPs formulated with second-generation PEG lipids (PEG-G2C12 and PEG-G2C16) and all three third-generation PEG lipids (PEG-G3C8, PEG-G3C12, and PEG-G3C16) lost the ability to deliver siRNA effectively in vitro and in vivo. Overall, we determined that the hydrophobic domain chemical structure of linear-dendritic poly(ethylene glycol) lipids affected the RNA delivery of DLNPs by impacting the escape of 5A2-SC8 DLNPs from endosomes at early cell incubation times, thereby indicating how PEG lipid anchoring and chemical structure can modulate in vitro and in vivo siRNA delivery efficacies.
Assuntos
Dendrímeros/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanopartículas/química , Polietilenoglicóis/química , RNA Interferente Pequeno/administração & dosagem , Animais , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/químicaRESUMO
Emerging therapeutics that utilize RNA interference (RNAi) have the potential to treat broad classes of diseases due to their ability to reversibly silence target genes. In August 2018, the FDA approved the first siRNA therapeutic, called ONPATTRO™ (Patisiran), for the treatment of transthyretin-mediated amyloidosis. This was an important milestone for the field of siRNA delivery that opens the door for additional siRNA drugs. Currently, >20 small interfering RNA (siRNA)-based therapies are in clinical trials for a wide variety of diseases including cancers, genetic disorders, and viral infections. To maximize therapeutic benefits of siRNA-based drugs, a number of chemical strategies have been applied to address issues associated with efficacy, specificity, and safety. This review focuses on the chemical perspectives behind non-viral siRNA delivery systems, including siRNA synthesis, siRNA conjugates, and nanoparticle delivery using nucleotides, lipids, and polymers. Tracing and understanding the chemical development of strategies to make siRNAs into drugs is important to guide development of additional clinical candidates and enable prolonged success of siRNA therapeutics.
Assuntos
Sistemas de Liberação de Medicamentos , RNA Interferente Pequeno/administração & dosagem , Animais , Humanos , Ligantes , Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Nucleotídeos/administração & dosagem , Polímeros/administração & dosagem , RNA Interferente Pequeno/químicaRESUMO
mRNA-mediated protein replacement represents a promising concept for the treatment of liver disorders. Children born with fumarylacetoacetate hydrolase (FAH) mutations suffer from Hepatorenal Tyrosinemia Type 1 (HT-1) resulting in renal dysfunction, liver failure, neurological impairments, and cancer. Protein replacement therapy using FAH mRNA offers tremendous potential to cure HT-1, but is currently hindered by the development of effective mRNA carriers that can function in diseased livers. Structure-guided, rational optimization of 5A2-SC8 mRNA-loaded dendrimer lipid nanoparticles (mDLNPs) increases delivery potency of FAH mRNA, resulting in functional FAH protein and sustained normalization of body weight and liver function in FAH-/- knockout mice. Optimization using luciferase mRNA produces DLNP carriers that are efficacious at mRNA doses as low as 0.05 mg kg-1 in vivo. mDLNPs transfect > 44% of all hepatocytes in the liver, yield high FAH protein levels (0.5 mg kg-1 mRNA), and are well tolerated in a knockout mouse model with compromised liver function. Genetically engineered FAH-/- mice treated with FAH mRNA mDLNPs have statistically equivalent levels of TBIL, ALT, and AST compared to wild type C57BL/6 mice and maintain normal weight throughout the month-long course of treatment. This study provides a framework for the rational optimization of LNPs to improve delivery of mRNA broadly and introduces a specific and viable DLNP carrier with translational potential to treat genetic diseases of the liver.