Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 376(6591): 394-396, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35446632

RESUMO

Cells migrate through crowded microenvironments within tissues during normal development, immune response, and cancer metastasis. Although migration through pores and tracks in the extracellular matrix (ECM) has been well studied, little is known about cellular traversal into confining cell-dense tissues. We find that embryonic tissue invasion by Drosophila macrophages requires division of an epithelial ectodermal cell at the site of entry. Dividing ectodermal cells disassemble ECM attachment formed by integrin-mediated focal adhesions next to mesodermal cells, allowing macrophages to move their nuclei ahead and invade between two immediately adjacent tissues. Invasion efficiency depends on division frequency, but reduction of adhesion strength allows macrophage entry independently of division. This work demonstrates that tissue dynamics can regulate cellular infiltration.


Assuntos
Adesões Focais , Integrinas , Animais , Adesão Celular/fisiologia , Divisão Celular , Movimento Celular/fisiologia , Drosophila , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Macrófagos/metabolismo
2.
Dev Cell ; 57(7): 883-900.e10, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35413237

RESUMO

Ribosomal defects perturb stem cell differentiation, and this is the cause of ribosomopathies. How ribosome levels control stem cell differentiation is not fully known. Here, we discover that three DExD/H-box proteins govern ribosome biogenesis (RiBi) and Drosophila oogenesis. Loss of these DExD/H-box proteins, which we name Aramis, Athos, and Porthos, aberrantly stabilizes p53, arrests the cell cycle, and stalls germline stem cell (GSC) differentiation. Aramis controls cell-cycle progression by regulating translation of mRNAs that contain a terminal oligo pyrimidine (TOP) motif in their 5' UTRs. We find that TOP motifs confer sensitivity to ribosome levels that are mediated by La-related protein (Larp). One such TOP-containing mRNA codes for novel nucleolar protein 1 (Non1), a conserved p53 destabilizing protein. Upon a sufficient ribosome concentration, Non1 is expressed, and it promotes GSC cell-cycle progression via p53 degradation. Thus, a previously unappreciated TOP motif in Drosophila responds to reduced RiBi to co-regulate the translation of ribosomal proteins and a p53 repressor, coupling RiBi to GSC differentiation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Diferenciação Celular/fisiologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Oogênese , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
EMBO J ; 41(12): e109049, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35319107

RESUMO

Cellular metabolism must adapt to changing demands to enable homeostasis. During immune responses or cancer metastasis, cells leading migration into challenging environments require an energy boost, but what controls this capacity is unclear. Here, we study a previously uncharacterized nuclear protein, Atossa (encoded by CG9005), which supports macrophage invasion into the germband of Drosophila by controlling cellular metabolism. First, nuclear Atossa increases mRNA levels of Porthos, a DEAD-box protein, and of two metabolic enzymes, lysine-α-ketoglutarate reductase (LKR/SDH) and NADPH glyoxylate reductase (GR/HPR), thus enhancing mitochondrial bioenergetics. Then Porthos supports ribosome assembly and thereby raises the translational efficiency of a subset of mRNAs, including those affecting mitochondrial functions, the electron transport chain, and metabolism. Mitochondrial respiration measurements, metabolomics, and live imaging indicate that Atossa and Porthos power up OxPhos and energy production to promote the forging of a path into tissues by leading macrophages. Since many crucial physiological responses require increases in mitochondrial energy output, this previously undescribed genetic program may modulate a wide range of cellular behaviors.


Assuntos
Drosophila , Sacaropina Desidrogenases , Animais , Drosophila/metabolismo , Metabolismo Energético , Macrófagos/metabolismo , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , Sacaropina Desidrogenases/genética , Sacaropina Desidrogenases/metabolismo
4.
Front Oncol ; 12: 777634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211397

RESUMO

Solute carriers are increasingly recognized as participating in a plethora of pathologies, including cancer. We describe here the involvement of the orphan solute carrier Major Facilitator Superfamily Domain-containing protein 1 (MFSD1) in the regulation of tumor cell migration. Loss of MFSD1 enabled higher levels of metastasis in experimental and spontaneous metastasis mouse models. We identified an increased migratory potential in MFSD1-/- tumor cells which was mediated by increased focal adhesion turnover, reduced stability of mature inactive ß1 integrin, and the resulting increased integrin activation index. We show that MFSD1 promoted recycling to the cell surface of endocytosed inactive ß1 integrin and thereby protected ß1 integrin from proteolytic degradation; this led to dampening of the integrin activation index. Furthermore, downregulation of MFSD1 expression was observed during the early steps of tumorigenesis, and higher MFSD1 expression levels correlate with a better cancer patient prognosis. In sum, we describe a requirement for endolysosomal MFSD1 in efficient ß1 integrin recycling to suppress tumor cell dissemination.

5.
Elife ; 92020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31944178

RESUMO

Unpaired ligands are secreted signals that act via a GP130-like receptor, domeless, to activate JAK/STAT signalling in Drosophila. Like many mammalian cytokines, unpaireds can be activated by infection and other stresses and can promote insulin resistance in target tissues. However, the importance of this effect in non-inflammatory physiology is unknown. Here, we identify a requirement for unpaired-JAK signalling as a metabolic regulator in healthy adult Drosophila muscle. Adult muscles show basal JAK-STAT signalling activity in the absence of any immune challenge. Plasmatocytes (Drosophila macrophages) are an important source of this tonic signal. Loss of the dome receptor on adult muscles significantly reduces lifespan and causes local and systemic metabolic pathology. These pathologies result from hyperactivation of AKT and consequent deregulation of metabolism. Thus, we identify a cytokine signal that must be received in muscle to control AKT activity and metabolic homeostasis.


Assuntos
Citocinas/metabolismo , Proteínas de Drosophila , Músculos/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptores de Interleucina , Transdução de Sinais/genética , Animais , Animais Geneticamente Modificados , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Homeostase , Janus Quinases/genética , Janus Quinases/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo
6.
Elife ; 82019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30910009

RESUMO

Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva's vertebrate ortholog, MFSD1, rescues the minerva mutant's migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Movimento Celular , Macrófagos/imunologia , Processamento de Proteína Pós-Traducional , Animais , Drosophila melanogaster , Regulação da Expressão Gênica , Glicosilação
7.
Dev Cell ; 45(3): 331-346.e7, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29738712

RESUMO

Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo.


Assuntos
Movimento Celular/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Hemócitos/citologia , Macrófagos/citologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Miosinas/genética , Miosinas/metabolismo , Transdução de Sinais
8.
G3 (Bethesda) ; 8(3): 845-857, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29321168

RESUMO

Drosophila melanogaster plasmatocytes, the phagocytic cells among hemocytes, are essential for immune responses, but also play key roles from early development to death through their interactions with other cell types. They regulate homeostasis and signaling during development, stem cell proliferation, metabolism, cancer, wound responses, and aging, displaying intriguing molecular and functional conservation with vertebrate macrophages. Given the relative ease of genetics in Drosophila compared to vertebrates, tools permitting visualization and genetic manipulation of plasmatocytes and surrounding tissues independently at all stages would greatly aid a fuller understanding of these processes, but are lacking. Here, we describe a comprehensive set of transgenic lines that allow this. These include extremely brightly fluorescing mCherry-based lines that allow GAL4-independent visualization of plasmatocyte nuclei, the cytoplasm, or the actin cytoskeleton from embryonic stage 8 through adulthood in both live and fixed samples even as heterozygotes, greatly facilitating screening. These lines allow live visualization and tracking of embryonic plasmatocytes, as well as larval plasmatocytes residing at the body wall or flowing with the surrounding hemolymph. With confocal imaging, interactions of plasmatocytes and inner tissues can be seen in live or fixed embryos, larvae, and adults. They permit efficient GAL4-independent Fluorescence-Activated Cell Sorting (FACS) analysis/sorting of plasmatocytes throughout life. To facilitate genetic studies of reciprocal signaling, we have also made a plasmatocyte-expressing QF2 line that, in combination with extant GAL4 drivers, allows independent genetic manipulation of both plasmatocytes and surrounding tissues, and GAL80 lines that block GAL4 drivers from affecting plasmatocytes, all of which function from the early embryo to the adult.

9.
Curr Biol ; 27(22): 3526-3534.e4, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29129537

RESUMO

The basement membrane (BM) is a thin layer of extracellular matrix (ECM) beneath nearly all epithelial cell types that is critical for cellular and tissue function. It is composed of numerous components conserved among all bilaterians [1]; however, it is unknown how all of these components are generated and subsequently constructed to form a fully mature BM in the living animal. Although BM formation is thought to simply involve a process of self-assembly [2], this concept suffers from a number of logistical issues when considering its construction in vivo. First, incorporation of BM components appears to be hierarchical [3-5], yet it is unclear whether their production during embryogenesis must also be regulated in a temporal fashion. Second, many BM proteins are produced not only by the cells residing on the BM but also by surrounding cell types [6-9], and it is unclear how large, possibly insoluble protein complexes [10] are delivered into the matrix. Here we exploit our ability to live image and genetically dissect de novo BM formation during Drosophila development. This reveals that there is a temporal hierarchy of BM protein production that is essential for proper component incorporation. Furthermore, we show that BM components require secretion by migrating macrophages (hemocytes) during their developmental dispersal, which is critical for embryogenesis. Indeed, hemocyte migration is essential to deliver a subset of ECM components evenly throughout the embryo. This reveals that de novo BM construction requires a combination of both production and distribution logistics allowing for the timely delivery of core components.


Assuntos
Membrana Basal/fisiologia , Matriz Extracelular/metabolismo , Animais , Membrana Basal/metabolismo , Movimento Celular/fisiologia , Colágeno/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Células Epiteliais/metabolismo , Matriz Extracelular/fisiologia , Macrófagos/metabolismo
10.
Curr Opin Cell Biol ; 36: 71-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26210104

RESUMO

The majority of immune cells in Drosophila melanogaster are plasmatocytes; they carry out similar functions to vertebrate macrophages, influencing development as well as protecting against infection and cancer. Plasmatocytes, sometimes referred to with the broader term of hemocytes, migrate widely during embryonic development and cycle in the larvae between sessile and circulating positions. Here we discuss the similarities of plasmatocyte developmental migration and its functions to that of vertebrate macrophages, considering the recent controversy regarding the functions of Drosophila PDGF/VEGF related ligands. We also examine recent findings on the significance of adhesion for plasmatocyte migration in the embryo, as well as proliferation, trans-differentiation, and tumor responses in the larva. We spotlight parallels throughout to vertebrate immune responses.


Assuntos
Movimento Celular , Drosophila melanogaster/citologia , Animais , Adesão Celular , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/imunologia , Hemócitos/citologia , Humanos , Larva/citologia , Larva/imunologia
11.
Annu Rev Cell Dev Biol ; 22: 237-65, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16774460

RESUMO

The basic concepts of the molecular machinery that mediates cell migration have been gleaned from cell culture systems. However, the three-dimensional environment within an organism presents migrating cells with a much greater challenge. They must move between and among other cells while interpreting multiple attractive and repulsive cues to choose their proper path. They must coordinate their cell adhesion with their surroundings and know when to start and stop moving. New insights into the control of these remaining mysteries have emerged from genetic dissection and live imaging of germ cell migration in Drosophila, zebrafish, and mouse embryos. In this review, we first describe germ cell migration in cellular and mechanistic detail in these different model systems. We then compare these systems to highlight the emerging principles. Finally, we contrast the migration of germ cells with that of immune and cancer cells to outline the conserved and different mechanisms.


Assuntos
Movimento Celular , Células Germinativas/citologia , Animais , Drosophila/citologia , Camundongos , Peixe-Zebra/fisiologia
12.
Nat Cell Biol ; 5(3): 231-5, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12598904

RESUMO

Tripartite G-protein-coupled receptors (GPCRs) represent one of the largest groups of signal transducers, transmitting signals from hormones, neuropeptides, odorants, food and light. Ligand-bound receptors catalyse GDP/GTP exchange on the G-protein alpha-subunit (Galpha), leading to alpha-GTP separation from the betagamma subunits and pathway activation. Activating mutations in the receptors or G proteins underlie many human diseases, including some cancers, dwarfism and premature puberty. Regulators of G-protein signalling (RGS proteins) are known to modulate the level and duration of ligand-induced signalling by accelerating the intrinsic GTPase activity of the Galpha subunit, and thus reformation of the inactive GDP-bound Galpha. Here we find that even in the absence of receptor, mutation of the RGS family member Sst2 (refs 6-9) permits spontaneous activation of the G-protein-coupled mating pathway in Saccharomyces cerevisiae at levels normally seen only in the presence of ligand. Our work demonstrates the occurrence of spontaneous tripartite G-protein signalling in vivo and identifies a requirement for RGS proteins in preventing such receptor-independent activation.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Mutação , Proteínas RGS/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Separação Celular , Humanos , Proteínas RGS/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA