Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Neuroimmune Pharmacol ; 13(3): 383-395, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29790105

RESUMO

Tissue damage and pathogen invasion during surgical trauma have been identified as contributing factors leading to neuroinflammation in the hippocampus, which can be protected by stimulation of the cholinergic anti-inflammatory pathway using the acetylcholinesterase inhibitor physostigmine. Macroautophagy, an intracellular degradation pathway used to recycle and eliminate damaged proteins and organelles by lysosomal digestion, seems to be important for cell survival under stress conditions. This study aimed to examine the role of autophagy in physostigmine-mediated hippocampal cell protection in a rat model of surgery stress. In the presence or absence of physostigmine, adult Wistar rats underwent surgery in combination with lipopolysaccharide (LPS). Activated microglia, apoptosis-, autophagy-, and anti-inflammatory-related genes and -proteins in the hippocampus were determined by Real-Time PCR, Western blot and fluorescence microscopy after 1 h, 24 h and 3 d. Surgery combined with LPS-treatment led to microglia activation after 1 h and 24 h which was accompanied by apoptotic cell death after 24 h in the hippocampus. Furthermore, it led to a decreased expression of ATG-3 after 24 h and an increased expression of p62/ SQSTM1 after 1 h and 24 h. Administration of physostigmine significantly increased autophagy related markers and restored the autophagic flux after surgery stress, detected by increased degradation of p62/ SQSTM1 in the hippocampus after 1 h and 24 h. Furthermore, physostigmine reduced activated microglia and apoptosis relevant proteins and elevated the increased expression of TGF-beta1 and MFG-E8 after surgery stress. In conclusion, activation of autophagy may be essential in physostigmine-induced neuroprotection against surgery stress.


Assuntos
Autofagia/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Lipopolissacarídeos/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Fisostigmina/farmacologia , Estresse Fisiológico , Animais , Apoptose/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/biossíntese , Proteína Beclina-1/metabolismo , Inflamação/genética , Inflamação/patologia , Inflamação/psicologia , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Microglia/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Peptídeo Sintases/biossíntese , Período Pós-Operatório , Ratos , Ratos Wistar , Proteína Sequestossoma-1/biossíntese
2.
Anticancer Agents Med Chem ; 18(4): 591-596, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29493464

RESUMO

BACKGROUND: Glutamate receptors are widely expressed in different types of cancer cells. α-Amino-3- hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors are ionotropic glutamate receptors which are coupled to intracellular signaling pathways that influence cancer cell survival, proliferation, and migration. Blockade of AMPA receptors by pharmacologic compounds may potentially constitute an effective tool in anticancer treatment strategies. METHOD: Here we investigated the impact of the AMPA receptor antagonist CFM-2 on the expression of the protein survivin, which is known to promote cancer cell survival and proliferation. We show that CFM-2 inhibits survivin expression at mRNA and protein levels and decreases the viability of cancer cells. Using a stably transfected cell line which overexpresses survivin, we demonstrate that over-expression of survivin enhances cancer cell viability and attenuates CFM-2-mediated inhibition of cancer cell growth. RESULT: These findings point towards suppression of survivin expression as a new mechanism contributing to anticancer effects of AMPA antagonists.


Assuntos
Antineoplásicos/farmacologia , Benzodiazepinonas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Células A549 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Receptores de AMPA/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
Int J Mol Sci ; 18(9)2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832497

RESUMO

During surgery or infection, peripheral inflammation can lead to neuroinflammation, which is associated with cognitive impairment, neurodegeneration, and several neurodegenerative diseases. Dexmedetomidine, an α-2-adrenoceptor agonist, is known to exert anti-inflammatory and neuroprotective properties and reduces the incidence of postoperative cognitive impairments. However, on the whole the molecular mechanisms are poorly understood. This study aims to explore whether dexmedetomidine influences microRNAs (miRNAs) in a rat model of lipopolysaccharide (LPS)-induced neuroinflammation. Adult Wistar rats were injected with 1 mg/kg LPS intraperitoneal (i.p.) in the presence or absence of 5 µg/kg dexmedetomidine. After 6 h, 24 h, and 7 days, gene expressions of interleukin 1-ß (IL1-ß), tumor necrosis factor-α (TNF-α), and microRNA expressions of miR 124, 132, 134, and 155 were measured in the hippocampus, cortex, and plasma. Dexmedetomidine decreased the LPS-induced neuroinflammation in the hippocampus and cortex via significant reduction of the IL1-ß and TNF-α gene expressions after 24 h. Moreover, the LPS-mediated increased expressions of miR 124, 132, 134, and 155 were significantly decreased after dexmedetomidine treatment in both brain regions. In plasma, dexmedetomidine significantly reduced LPS-induced miR 155 after 6 h. Furthermore, there is evidence that miR 132 and 134 may be suitable as potential biomarkers for the detection of neuroinflammation.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Anti-Inflamatórios/farmacologia , Encéfalo/metabolismo , Dexmedetomidina/farmacologia , MicroRNAs/genética , Animais , Encéfalo/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , MicroRNAs/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Neurotox Res ; 32(3): 460-472, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28643232

RESUMO

Phenobarbital is the most commonly used drug for the treatment of neonatal seizures but may induce neurodegeneration in the developing brain. Methylxanthine caffeine is used for the treatment of apnea in newborn infants and appears to be neuroprotective, as shown by antiapoptotic and anti-inflammatory effects in oxidative stress models in newborn rodents and reduced rates of cerebral palsy in human infants treated with caffeine. We hypothesized that caffeine may counteract the proapoptotic effects of phenobarbital in newborn rats. Postnatal day 4 (P4) rats received phenobarbital (50 mg/kg) +/- caffeine (10 mg/kg) for three consecutive days. Brains examined at 6, 12, and 24 h after last injection of phenobarbital showed a drastic increase of apoptotic cell death (TUNEL+), which was attenuated by co-treatment with caffeine at 6 and 24 h but not at 12 h. Phenobarbital also increased protein levels of apoptosis inducing factor (AIF) and cleaved caspase-3, which was reduced by caffeine co-administration at all time points investigated. RNA expression of the pro-inflammatory cytokines TNFα, IFNγ, and IL-1ß, but not IL-18, was upregulated by phenobarbital. Co-treatment with caffeine significantly decreased these upregulations at all time points investigated, while caffeine without phenobarbital resulted in increased expression of TNFα, IL-1ß, and IL-18, but not IFNγ at 6 h. Downregulation of the adenosine A1 and A2a receptors, both of which bind caffeine, by 24 h of phenobarbital exposure was partly antagonized by caffeine. These results raise the possibility that the phenobarbital-induced adverse effects could be reduced by a co-treatment with caffeine.


Assuntos
Anticonvulsivantes/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Cafeína/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenobarbital/toxicidade , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Degeneração Neural/tratamento farmacológico , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Distribuição Aleatória , Ratos Wistar , Receptores Purinérgicos P1/metabolismo , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
5.
PLoS One ; 12(2): e0171498, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28158247

RESUMO

Dexmedetomidine (DEX) is a highly selective agonist of α2-receptors with sedative, anxiolytic, and analgesic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on hippocampal neurogenesis, specifically the proliferation capacity and maturation of neurons and neuronal plasticity following the induction of hyperoxia in neonatal rats. Six-day old sex-matched Wistar rats were exposed to 80% oxygen or room air for 24 h and treated with 1, 5 or 10 µg/kg of dexmedetomidine or normal saline. A single pretreatment with DEX attenuated the hyperoxia-induced injury in terms of neurogenesis and plasticity. In detail, both the proliferation capacity (PCNA+ cells) as well as the expression of neuronal markers (Nestin+, PSA-NCAM+, NeuN+ cells) and transcription factors (SOX2, Tbr1/2, Prox1) were significantly reduced under hyperoxia compared to control. Furthermore, regulators of neuronal plasticity (Nrp1, Nrg1, Syp, and Sema3a/f) were also drastically decreased. A single administration of dexmedetomidine prior to oxygen exposure resulted in a significant up-regulation of expression-profiles compared to hyperoxia. Our results suggest that dexmedetomidine may have neuroprotective effects in an acute hyperoxic model of the neonatal rat.


Assuntos
Lesões Encefálicas/prevenção & controle , Hipóxia Celular , Dexmedetomidina/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Lesões Encefálicas/induzido quimicamente , Diferenciação Celular/efeitos dos fármacos , Feminino , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Masculino , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Oxigênio/fisiologia , Ratos , Ratos Wistar , Transcrição Gênica/efeitos dos fármacos
6.
Int J Mol Sci ; 18(1)2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28106777

RESUMO

Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term "oxygen radical disease of prematurity". Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28-32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Cafeína/uso terapêutico , Hiperóxia/complicações , Hiperóxia/tratamento farmacológico , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Lesões Encefálicas/patologia , Cafeína/administração & dosagem , Cafeína/farmacologia , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/patologia , Metaloproteinases da Matriz/metabolismo , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxinas/metabolismo , Plasminogênio/metabolismo , Ratos Wistar , Ativador de Plasminogênio Tecidual/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Int J Med Sci ; 12(12): 995-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664262

RESUMO

Uncoupling proteins (UCPs) are anion channels that can decouple the mitochondrial respiratory chain. "Mild uncoupling" of internal respiration reduces free radical production and oxidative cell stress. Chronic alcohol consumption is a potent inducer of oxidative stress in multiple tissues and regulates UCP-2 and -4 expression in the brain. To analyse the impact of chronic alcohol intake on UCP-2 expression in tissues with high endogenous UCP-2 contents, male Wistar rats (n=34) were treated with a 12-week 5% alcohol diet. In the lungs and the spleen of rats with a chronic alcohol diet cytochrome c release from mitochondria was significantly increased. Both organs did not show any altered gene and protein expression of UCP-2. Different to cerebral tissue chronic alcohol consumption has no regulatory effect on UCP-2 gene and protein expression in organs with a high endogenous UCP-2 content. Therefore, chronic alcohol consumption leads to a tissue specific expression of UCP-2.


Assuntos
Alcoolismo/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Alcoolismo/genética , Animais , Encéfalo/metabolismo , Citocromos c/metabolismo , Expressão Gênica , Canais Iônicos/genética , Pulmão/metabolismo , Masculino , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Baço/metabolismo , Distribuição Tecidual , Proteína Desacopladora 2
8.
Exp Lung Res ; 41(8): 466-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26381719

RESUMO

AIM OF THE STUDY: Repeated pulmonary lavage allows to reliably reproduce failure of gas exchange and major histological findings of acute lung injury (ALI). However, because the capacity of pulmonary lavage to induce pulmonary inflammation is not well established in rodents, this study aims to characterize the induction of pulmonary inflammation in a rat model of ALI. MATERIALS AND METHODS: Male adult rats were divided into a treatment group (n = 9) that received pulmonary lavage with consecutive mechanical ventilation, and a control group that received mechanical ventilation only (n = 9). Arterial blood gas analyses were performed every 30 min throughout the study. Pressure-volume curves, and lung tissue and plasma samples, were obtained at 240 min after the start of mechanical ventilation. Protein content and surface activity of bronchoalveolar lavage fluid was assessed. Transcriptional and translational regulation of pro- and anti-inflammatory cytokines IL-1ß, TNF-α, IL-6, and IL-10 was determined in lungs and plasma. Markers of cellular stress were measured in lung tissue. RESULTS: Pulmonary lavage significantly decreased lung compliance, induced hypoxia and hypercapnia, and mediated respiratory acidosis. Protein content of lavage fluid was significantly increased and contained washed out surfactant. Expression of IL-1ß, TNF-α, and IL-6 mRNA and protein expression of IL-1ß and TNF-α was significantly induced in lavaged lungs, without spillover into the systemic circulation. Markers of cellular stress were significantly upregulated in lavaged lungs. CONCLUSIONS: This model of ALI applied in rats can induce pulmonary inflammation. The model might be used to develop therapeutic strategies that target pulmonary inflammation in ALI.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Pulmão/metabolismo , Pulmão/patologia , Pneumonia/metabolismo , Pneumonia/patologia , Animais , Lavagem Broncoalveolar/métodos , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Surfactantes Pulmonares/metabolismo , Ratos , Ratos Sprague-Dawley , Respiração Artificial/métodos , Fator de Necrose Tumoral alfa/metabolismo
9.
Inflammation ; 38(4): 1690-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25758542

RESUMO

Recently, AT2 receptors have been discovered on the surface of human immunocompetent cells such as monocytes. Data on regulative properties of this receptor on the cellular immune response are poor. We hypothesized that direct stimulation of the AT2 receptor mediates anti-inflammatory responses in these cells. Human monocytic THP-1 and U937 cells were stimulated with lipopolysaccharide (LPS) and the selective AT2 receptor agonist Compound 21 (C21). Expression of pro- and anti-inflammatory cytokines IL-6, IL-10, tumor necrosis factor-α (TNFα), and IL-1ß were analyzed on both the transcriptional and the translational level over course of time. Treatment with C21 attenuated the expression of TNFα, IL-6, and IL-10 after LPS challenge in both cell lines in a time- and dose-dependent manner. We conclude that selective AT2 receptor stimulation acts anti-inflammatory in human monocytes. Modulation of cytokine response by AT2 receptor activation might be a beneficial and novel treatment concept in inflammatory conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/toxicidade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Receptor Tipo 2 de Angiotensina/biossíntese , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Células U937
10.
Oxid Med Cell Longev ; 2015: 530371, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25653737

RESUMO

Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight) and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1ß on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable.


Assuntos
Apoptose/efeitos dos fármacos , Dexmedetomidina/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Dexmedetomidina/uso terapêutico , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Glutationa/metabolismo , Hiperóxia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar
11.
PLoS One ; 8(5): e64480, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737984

RESUMO

BACKGROUND: Propofol is commonly used as sedative in newborns and children. Recent experimental studies led to contradictory results, revealing neurodegenerative or neuroprotective properties of propofol on the developing brain. We investigated neurodevelopmental short- and long-term effects of neonatal propofol treatment. METHODS: 6-day-old Wistar rats (P6), randomised in two groups, received repeated intraperitoneal injections (0, 90, 180 min) of 30 mg/kg propofol or normal saline and sacrificed 6, 12 and 24 hrs following the first injection. Cortical and thalamic areas were analysed by Western blot and quantitative real-time PCR (qRT-PCR) for expression of apoptotic and neurotrophin-dependent signalling pathways. Long-term effects were assessed by Open-field and Novel-Object-Recognition at P30 and P120. RESULTS: Western blot analyses revealed a transient increase of activated caspase-3 in cortical, and a reduction of active mitogen-activated protein kinases (ERK1/2, AKT) in cortical and thalamic areas. qRT-PCR analyses showed a down-regulation of neurotrophic factors (BDNF, NGF, NT-3) in cortical and thalamic regions. Minor impairment in locomotive activity was observed in propofol treated adolescent animals at P30. Memory or anxiety were not impaired at any time point. CONCLUSION: Exposing the neonatal rat brain to propofol induces acute neurotrophic imbalance and neuroapoptosis in a region- and time-specific manner and minor behavioural changes in adolescent animals.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Hipnóticos e Sedativos/farmacologia , Propofol/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/fisiologia , Caspase 3/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Isoenzimas/metabolismo , Memória/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fatores de Crescimento Neural/genética , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
12.
PLoS One ; 8(5): e62679, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671623

RESUMO

Exogenous stress like tissue damage and pathogen invasion during surgical trauma could lead to a peripheral inflammatory response and induce neuroinflammation, which can result in postoperative cognitive dysfunction (POCD). The cholinergic anti-inflammatory pathway is a neurohumoral mechanism that plays a prominent role by suppressing the inflammatory response. Treatments with acetylcholinesterase inhibitors enhance cholinergic transmission and may therefore act as a potential approach to prevent neuroinflammation. In the presence or absence of acetylcholinesterase inhibitors, adult Wistar rats underwent surgery alone or were additionally treated with lipopolysaccharide (LPS). Physostigmine, which can overcome the blood-brain barrier or neostigmine acting only peripheral, served as acetylcholinesterase inhibitors. The expression of pro- and anti-inflammatory cytokines in the cortex, hippocampus, spleen and plasma was measured after 1 h, 24 h, 3 d and 7 d using Real-Time PCR, western blot analysis or cytometric bead array (CBA). Fluoro-Jade B staining of brain slices was employed to elucidate neurodegeneration. The activity of acetylcholinesterase was estimated using a spectrofluorometric method. Surgery accompanied by LPS-treatment led to increased IL-1beta gene and protein upregulation in the cortex and hippocampus but was significantly reduced by physostigmine and neostigmine. Furthermore, surgery in combination with LPS-treatment caused increased protein expression of IL-1, TNF-alpha and IL-10 in the spleen and plasma. Physostigmine and neostigmine significantly decreased the protein expression of IL-1 and TNF-alpha. Neuronal degeneration and the activity of acetylcholinesterase were elevated after surgery with LPS-treatment and reduced by physostigmine and neostigmine. Along with LPS-treatment, acetylcholinesterase inhibitors reduce the pro-inflammatory response as well as neurodegeneration after surgery in the cortex and hippocampus. This combination may represent a tool to break the pathogenesis of POCD.


Assuntos
Anti-Inflamatórios/farmacologia , Hipocampo/imunologia , Neostigmina/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Fisostigmina/farmacologia , Complicações Pós-Operatórias/tratamento farmacológico , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/imunologia , Córtex Cerebral/patologia , Inibidores da Colinesterase/farmacologia , Avaliação Pré-Clínica de Medicamentos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Mediadores da Inflamação/fisiologia , Interleucina-1beta/fisiologia , Lipopolissacarídeos/farmacologia , Masculino , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/imunologia , Complicações Pós-Operatórias/imunologia , Ratos , Ratos Wistar , Baço/imunologia , Baço/metabolismo , Estresse Fisiológico , Fator de Necrose Tumoral alfa/fisiologia
13.
Eur Respir J ; 41(4): 966-73, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22878872

RESUMO

In preterm human infants, briefly elevated concentrations of oxygen are associated with a prolonged increase in blood chemokine concentrations and the development of bronchopulmonary dysplasia (BPD). Caffeine given to preterm infants for the prevention or treatment of apnoea has been shown to reduce the rate of BPD. We tested the hypotheses that infant rats exposed to a combination of caffeine and hyperoxia would be less susceptible to lung injury than those exposed to hyperoxia alone and that caffeine decreases the pulmonary tissue expression of chemokines and leukocyte influx following hyperoxia. Using 6-day-old rat pups, we demonstrated that 24 h of 80% oxygen exposure caused pulmonary recruitment of neutrophils and macrophages. High levels of oxygen upregulated the expression of: the CXC chemokines, cytokine-induced neutrophil chemoattractant-1 and macrophage inflammatory protein-2; the CC-chemokine monocyte chemoattractant protein-1; the pro-inflammatory cytokines tumour necrosis factor-α and interleukin-6, as measured by realtime PCR after the administration of caffeine (10 mg · kg(-1) body weight); and attenuated chemokine and cytokine upregulation, as well as the influx of CD11b(+), ED-1(+) and myeloperoxidase(+) leukocytes. These experiments suggest that protective effects of caffeine in the neonatal lung are mediated, at least in part, by reduction of pulmonary inflammation.


Assuntos
Cafeína/farmacologia , Hiperóxia/patologia , Pneumonia/patologia , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Estimulantes do Sistema Nervoso Central/farmacologia , Quimiocinas CXC/metabolismo , Citocinas/metabolismo , Humanos , Recém-Nascido , Leucócitos/citologia , Pulmão/patologia , Oxigênio/metabolismo , Pneumonia/metabolismo , Alvéolos Pulmonares/metabolismo , Ratos , Fatores de Tempo , Xantinas/farmacologia
14.
Anticancer Res ; 31(2): 565-73, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21378340

RESUMO

AIM: Despite recent improvements in treatment strategies, the results of chemotherapy in patients with advanced squamous cell carcinoma of the larynx are not satisfactory. Thus, the development of new approaches which influence specific metabolic pathways are needed. In the last decade, evidence has emerged implicating a role for glutamate as a signal mediator in tumors. MATERIALS AND METHODS: The presence of glutamate receptor subunits in two laryngeal cancer cell lines (RK33 and RK45) was evaluated by means of end-point PCR, real-time PCR, and immunocytochemistry. RESULTS: Glutamate receptor subunits are differentially expressed in laryngeal cancer cell lines. In addition, we show that selected ionotropic glutamate receptor antagonists and metabotropic glutamate receptor 5 antagonist inhibit proliferation of laryngeal cancer cells. Glutamate antagonists also affected activity of extracellular signal-regulated kinases 1/2 in tumor cells. CONCLUSION: Signaling through glutamate receptors may influence growth of laryngeal cancer cells and may constitute an adjunctive therapeutic target.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias Laríngeas/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Benzodiazepinas/farmacologia , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Humanos , Neoplasias Laríngeas/enzimologia , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patologia , Memantina/farmacologia , Microscopia Confocal , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Ionotrópicos de Glutamato/antagonistas & inibidores , Receptores Ionotrópicos de Glutamato/biossíntese , Receptores Ionotrópicos de Glutamato/genética , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/biossíntese , Receptores de Glutamato Metabotrópico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Alcohol Clin Exp Res ; 35(8): 1381-91, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21410490

RESUMO

BACKGROUND: Alcohol induces cellular stress and promotes cell death in immune cells. Molecular mechanisms by which ethanol impairs the function of immune cells are largely unknown. Autophagy is a degradation pathway, acting either as a pro-survival or pro-death mechanism activated during stress conditions. We examined whether ethanol influences autophagy in monocytic human U937, CD4 Jurkat, and MCF-7 cells. METHODS: Effects of ethanol during starvation-induced autophagy were investigated, treating cells with ethanol alone and in combination with activation of autophagy by rapamycin or inhibition by wortmannin. Apoptotic and necrotic cell death features such as the breakdown of the mitochondrial membrane potential, DNA fragmentation, and cell permeability were assessed using FACS analyses. Expression level of Beclin-1, LC3-II, Bcl-2, and the activation of caspase-3, and PARP-1 were determined using Western blot analyses. Influence of ethanol on formation of LC3-II complexes was assessed using fluorescence microscopy in MCF-7 cells stable transfected with a GFP-LC3-II-expression vector. RESULTS: Ethanol down regulated autophagy proteins such as Beclin-1 and LC3-II. Apoptosis was enhanced as shown by breakdown of mitochondrial potential, up-regulation of cleaved caspase-3 and PARP-1 and down-regulation of anti-apoptotic protein Bcl-2. Formation of LC3-II complexes was inhibited by ethanol in caspase-3 deficient MCF-7 cells. Stimulation of autophagy by rapamycin prevented ethanol-induced apoptotic cell death. Inhibition of autophagy by wortmannin aggravated ethanol-mediated necrotic cell death. CONCLUSION: Inhibition of autophagy via ethanol enhances susceptibility to cell death.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Depressores do Sistema Nervoso Central/farmacologia , Regulação para Baixo , Etanol/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Necrose/metabolismo , Células U937 , Regulação para Cima/efeitos dos fármacos
16.
Apoptosis ; 16(6): 636-51, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21437721

RESUMO

Apoptosis is modulated by extrinsic and intrinsic signaling pathways through the formation of the death receptor-mediated death-inducing signaling complex (DISC) and the mitochondrial-derived apoptosome, respectively. Ino-C2-PAF, a novel synthetic phospholipid shows impressive antiproliferative and apoptosis-inducing activity. Little is known about the signaling pathway through which it stimulates apoptosis. Here, we show that this drug induces apoptosis through proteins of the death receptor pathway, which leads to an activation of the intrinsic apoptotic pathway. Apoptosis induced by Ino-C2-PAF and its glucosidated derivate, Glc-PAF, was dependent on the DISC components FADD and caspase-8. This can be inhibited in FADD--/-- and caspase-8--/-- cells, in which the breakdown of the mitochondrial membrane potential, release of cytochrome c and activation of caspase-9, -8 and -3 do not occur. In addition, the overexpression of crmA, c-Flip or dominant negative FADD as well as treatment with the caspase-8 inhibitor z-IETD-fmk protected against Ino-C2-PAF-induced apoptosis. Apoptosis proceeds in the absence of CD95/Fas-ligand expression and is independent of blockade of a putative death-ligand/receptor interaction. Furthermore, apoptosis cannot be inhibited in CD95/Fas--/-- Jurkat cells. Expression of Bcl-2 in either the mitochondria or the endoplasmic reticulum (ER) strongly inhibited Ino-C2-PAF- and Glc-PAF-induced apoptosis. In conclusion, Ino-C2-PAF and Glc-PAF trigger a CD95/Fas ligand- and receptor-independent atypical DISC that relies on the intrinsic apoptotic pathway via the ER and the mitochondria.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Mitocôndrias/metabolismo , Neoplasias/fisiopatologia , Fosfolipídeos/farmacologia , Transdução de Sinais , Caspase 8/genética , Ativação Enzimática/efeitos dos fármacos , Proteína de Domínio de Morte Associada a Fas/genética , Glicosilação , Humanos , Células Jurkat , Mitocôndrias/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fosfolipídeos/síntese química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
17.
J Perinat Med ; 39(1): 83-8, 2011 01.
Artigo em Inglês | MEDLINE | ID: mdl-20954855

RESUMO

Perinatal brain damage may result in impaired neurological development in extremely preterm infants. The underlying pathophysiological mechanisms are complex, and biomarkers of prognostic value are not available. The aim of this study was to analyze soluble Fas (sFas) concentrations in the cerebrospinal fluid (CSF) representative for involvement of apoptotic processes in preterm infants developing posthemorrhagic hydrocephalus (PHHC) and to link them to white matter damage (WMD) diagnosed by cranial ultrasound. A total of 29 preterm infants with PHHC were included in the study; 17 of them had signs of cystic WMD (cWMD) on ultrasound examinations. CSF samples were obtained at first ventriculostomy, and results were compared to those of a reference group of 24 preterm and term infants without neurologic diseases. sFas concentrations were elevated in CSF samples of PHHC patients compared to the reference group. In patients with cWMD, sFas concentrations were significantly higher than in patients without cWMD. These results indicate that apoptosis via the Fas pathway is involved in the pathogenesis of cWMD in the context of PHHC, and that sFas in the CSF may serve as a marker of cWMD development.


Assuntos
Dano Encefálico Crônico/líquido cefalorraquidiano , Hidrocefalia/líquido cefalorraquidiano , Doenças do Prematuro/líquido cefalorraquidiano , Hemorragias Intracranianas/complicações , Receptor fas/líquido cefalorraquidiano , Apoptose , Biomarcadores/líquido cefalorraquidiano , Dano Encefálico Crônico/diagnóstico por imagem , Dano Encefálico Crônico/etiologia , Humanos , Hidrocefalia/complicações , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/diagnóstico por imagem , Doenças do Prematuro/etiologia , Estudos Prospectivos , Ultrassonografia
18.
Alcohol ; 44(6): 495-506, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20693103

RESUMO

Molecular mechanisms accompanying ethanol-induced cytotoxicity remain to be defined. The renin-angiotensin system with its respective receptors, the angiotensin AT1 and AT2 receptor (AT1R and AT2R), has been implicated in these processes. The AT2R seems to counteract the pro-inflammatory, pro-hypertrophic, and pro-fibrotic actions of the AT1R and is involved in cellular differentiation and tissue repair. Recently, we identified poly(ADP-ribose) polymerase-1 (PARP-1) as a novel negative transcriptional regulator of the AT2R. However, the complex interactions between ethanol, PARP-1, and the AT2R are largely unknown. In this in vitro study, we aimed to clarify whether acute ethanol treatment modifies AT2R promoter activity or AT2R mRNA and protein levels and whether PARP-1 is involved in ethanol-mediated regulation of the AT2R. Murine fibroblasts of the R3T3 and MEF line (murine embryonic fibroblasts) were exposed to ethanol for 24h. AT2R promoter activity, mRNA and protein levels were analyzed with and without PARP-1 inhibition and in PARP-1 knockout MEF cells. Expression of PARP-1 was analyzed over course of time, and cell viability and DNA fragmentation were measured on single-cell level by flow cytometry. Ethanol exposition induced substantial downregulation of the AT2R on promoter, mRNA and protein levels in a dose-dependent manner. Pharmacological inhibition or ablation of PARP-1 completely abolished this effect. Ethanol treatment did not have any effect on AT1R mRNA and protein levels in MEF cells. Further, acute ethanol treatment promoted DNA fragmentation and caused transcriptional induction of PARP-1. Our findings reveal that PARP-1 is an upstream transcriptional regulator of the AT2 receptor in the context of ethanol exposure and represses the AT2R gene in fibroblasts in vitro. Variations in expression of the potentially tissue-protective AT2R might contribute to ethanol-mediated pathology.


Assuntos
Regulação para Baixo/genética , Etanol/farmacologia , Fibroblastos/metabolismo , Poli(ADP-Ribose) Polimerases/fisiologia , Receptor Tipo 2 de Angiotensina/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Fragmentação do DNA , Fibroblastos/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Humanos , Camundongos , Camundongos Knockout , Neuroblastoma , Células PC12 , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Regiões Promotoras Genéticas/genética , RNA Mensageiro/análise , Ratos , Receptor Tipo 2 de Angiotensina/análise
19.
Brain Behav Immun ; 24(5): 792-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19729061

RESUMO

Oxygen toxicity contributes to the pathogenesis of adverse neurological outcome in survivors of preterm birth in clinical studies. In infant rodent brains, hyperoxia triggers widespread apoptotic neurodegeneration, induces pro-inflammatory cytokines and inhibits growth factor signaling cascades. Since a tissue-protective effect has been observed for recombinant erythropoietin (rEpo), we hypothesized that rEpo would influence hyperoxia-induced oxidative stress in the developing rat brain. The aim of this study was to investigate the level of glutathione (reduced and oxidized), lipid peroxidation and the expression of heme oxygenase-1 (HO-1) and acetylcholinesterase (AChE) after hyperoxia and rEpo treatment. Six-day-old Wistar rats were exposed to 80% oxygen for 2-48 h and received 20,000 IU/kg rEpo intraperitoneally (i.p.). Sex-matched littermates kept under room air and injected with normal saline or rEpo served as controls. Treatment with rEpo significantly reduced hyperoxia-induced upregulation of oxidized glutathione (GSSG) and malondialdehyde, a product of lipid breakdown, whereas reduced glutathione (GSH) was upregulated by rEpo. In parallel, hyperoxia-treated immature rat brains revealed rEpo-suppressible upregulation of synaptic AChE-S as well as of the stress-inducible AChE-R variant, together predicting rEpo-protected cholinergic signaling and restrained inflammatory reactions. Furthermore, treatment with rEpo induced upregulation of HO-1 on mRNA, protein and activity level in the developing rat brain. Our results suggest that rEpo generates its protective effect against oxygen toxicity by a reduction of diverse oxidative stress parameters and by limiting the stressor-inducible changes in both HO-1 and cholinergic functions.


Assuntos
Encéfalo/patologia , Eritropoetina/farmacologia , Hiperóxia/patologia , Estresse Oxidativo/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Eritropoetina/uso terapêutico , Feminino , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Hiperóxia/tratamento farmacológico , Hiperóxia/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Proteínas Recombinantes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
20.
Basic Clin Pharmacol Toxicol ; 105(6): 425-32, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19821831

RESUMO

Betulin is a pentacyclic triterpene found in many plant species, among others, in white birch bark. The aim of the study was in vitro characterization of the anticancer activity of betulin in a range of human tumour cell lines (neuroblastoma, rhabdomyosarcoma-medulloblastoma, glioma, thyroid, breast, lung and colon carcinoma, leukaemia and multiple myeloma), and in primary tumour cultures isolated from patients (ovarian carcinoma, cervical carcinoma and glioblastoma multiforme). In this study, we demonstrated a remarkable anti-proliferative effect of betulin in all tested tumour cell cultures. Neuroblastoma (SK-N-AS) and colon carcinoma (HT-29) were the most sensitive to the anti-proliferative effect of betulin. Furthermore, betulin altered tumour cells morphology, decreased their motility and induced apoptotic cell death. These findings demonstrate the anti-cancer potential of betulin and suggest that they may be applied as an adjunctive measure in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA