Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 481(15): 983-997, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39078225

RESUMO

Pancreatic cancer is a malignancy arising from the endocrine or exocrine compartment of this organ. Tumors from exocrine origin comprise over 90% of all pancreatic cancers diagnosed. Of these, pancreatic ductal adenocarcinoma (PDAC) is the most common histological subtype. The five-year survival rate for PDAC ranged between 5 and 9% for over four decades, and only recently saw a modest increase to ∼12-13%, making this a severe and lethal disease. Like other cancers, PDAC initiation stems from genetic changes. However, therapeutic targeting of PDAC genetic drivers has remained relatively unsuccessful, thus the focus in recent years has expanded to the non-genetic factors underlying the disease pathogenesis. Specifically, it has been proposed that dynamic changes in the epigenetic landscape promote tumor growth and metastasis. Emphasis has been given to the re-organization of enhancers, essential regulatory elements controlling oncogenic gene expression, commonly marked my histone 3 lysine 4 monomethylation (H3K4me1). H3K4me1 is typically deposited by histone lysine methyltransferases (KMTs). While well characterized as oncogenes in other cancer types, recent work has expanded the role of KMTs as tumor suppressor in pancreatic cancer. Here, we review the role and translational significance for PDAC development and therapeutics of KMTs.


Assuntos
Carcinoma Ductal Pancreático , Histona-Lisina N-Metiltransferase , Histonas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Histonas/metabolismo , Histonas/genética , Animais , Epigênese Genética , Regulação Neoplásica da Expressão Gênica
2.
Cancer Res Commun ; 4(7): 1677-1689, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38896052

RESUMO

Aberrant activation of GLI transcription factors has been implicated in the pathogenesis of different tumor types including pancreatic ductal adenocarcinoma. However, the mechanistic link with established drivers of this disease remains in part elusive. In this study, using a new genetically engineered mouse model overexpressing constitutively active mouse form of GLI2 and a combination of genome-wide assays, we provide evidence of a novel mechanism underlying the interplay between KRAS, a major driver of pancreatic ductal adenocarcinoma development, and GLI2 to control oncogenic gene expression. These mice, also expressing KrasG12D, show significantly reduced median survival rate and accelerated tumorigenesis compared with the KrasG12D only expressing mice. Analysis of the mechanism using RNA sequencing demonstrate higher levels of GLI2 targets, particularly tumor growth-promoting genes, including Ccnd1, N-Myc, and Bcl2, in KrasG12D mutant cells. Furthermore, chromatin immunoprecipitation sequencing studies showed that in these cells KrasG12D increases the levels of trimethylation of lysine 4 of the histone 3 (H3K4me3) at the promoter of GLI2 targets without affecting significantly the levels of other major active chromatin marks. Importantly, Gli2 knockdown reduces H3K4me3 enrichment and gene expression induced by mutant Kras. In summary, we demonstrate that Gli2 plays a significant role in pancreatic carcinogenesis by acting as a downstream effector of KrasG12D to control gene expression.


Assuntos
Carcinoma Ductal Pancreático , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Proteína Gli2 com Dedos de Zinco , Animais , Humanos , Camundongos , Carcinogênese , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Histonas/metabolismo , Histonas/genética , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transcrição Gênica , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
3.
Biochem J ; 480(15): 1199-1216, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37477952

RESUMO

Aberrant activation of the Hedgehog (Hh) signaling pathway, through which the GLI family of transcription factors (TF) is stimulated, is commonly observed in cancer cells. One well-established mechanism of this increased activity is through the inactivation of Suppressor of Fused (SUFU), a negative regulator of the Hh pathway. Relief from negative regulation by SUFU facilitates GLI activity and induction of target gene expression. Here, we demonstrate a novel role for SUFU as a promoter of GLI activity in pancreatic ductal adenocarcinoma (PDAC). In non-ciliated PDAC cells unresponsive to Smoothened agonism, SUFU overexpression increases GLI transcriptional activity. Conversely, knockdown (KD) of SUFU reduces the activity of GLI in PDAC cells. Through array PCR analysis of GLI target genes, we identified B-cell lymphoma 2 (BCL2) among the top candidates down-regulated by SUFU KD. We demonstrate that SUFU KD results in reduced PDAC cell viability, and overexpression of BCL2 partially rescues the effect of reduced cell viability by SUFU KD. Further analysis using as a model GLI1, a major TF activator of the GLI family in PDAC cells, shows the interaction of SUFU and GLI1 in the nucleus through previously characterized domains. Chromatin immunoprecipitation (ChIP) assay shows the binding of both SUFU and GLI1 at the promoter of BCL2 in PDAC cells. Finally, we demonstrate that SUFU promotes GLI1 activity without affecting its protein stability. Through our findings, we propose a novel role of SUFU as a positive regulator of GLI1 in PDAC, adding a new mechanism of Hh/GLI signaling pathway regulation in cancer cells.


Assuntos
Neoplasias Pancreáticas , Proteínas Repressoras , Humanos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-bcl-2 , Neoplasias Pancreáticas
4.
Biochem J ; 480(3): 225-241, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36734208

RESUMO

Carcinoma-associated fibroblasts (CAFs) play an important role in the progression of multiple malignancies. Secretion of cytokines and growth factors underlies the pro-tumoral effect of CAFs. Although this paracrine function has been extensively documented, the molecular mechanisms controlling the expression of these factors remain elusive. In this study, we provide evidence of a novel CAF transcriptional axis regulating the expression of SDF1, a major driver of cancer cell migration, involving the transcription factor GLI1 and histone acetyltransferase p300. We demonstrate that conditioned media from CAFs overexpressing GLI1 induce the migration of pancreatic cancer cells, and this effect is impaired by an SDF1-neutralizing antibody. Using a combination of co-immunoprecipitation, proximity ligation assay and chromatin immunoprecipitation assay, we further demonstrate that GLI1 and p300 physically interact in CAFs to co-occupy and drive SDF1 promoter activity. Mapping experiments highlight the requirement of GLI1 N-terminal for the interaction with p300. Importantly, knockdowns of both GLI1 and p300 reduce SDF1 expression. Further analysis shows that knockdown of GLI1 decreases SDF1 promoter activity, p300 recruitment, and levels of its associated histone marks (H4ac, H3K27ac, and H3K14ac). Finally, we show that the integrity of two GLI binding sites in the SDF1 promoter is required for p300 recruitment. Our findings define a new role for the p300-GLI1 complex in the regulation of SDF1, providing new mechanistic insight into the molecular events controlling pancreatic cancer cells migration.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Movimento Celular , Imunoprecipitação da Cromatina , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Quimiocina CXCL12/metabolismo , Neoplasias Pancreáticas
5.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194924, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36842643

RESUMO

Upon accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER), the Unfolded Protein Response (UPR) is triggered to restore ER homeostasis. The induction of stress genes is a sine qua non condition for effective adaptive UPR. Although this requirement has been extensively described, the mechanisms underlying this process remain in part uncharacterized. Here, we show that p97/VCP, an AAA+ ATPase known to contribute to ER stress-induced gene expression, regulates the transcription factor GLI1, a primary effector of Hedgehog (Hh) signaling. Under basal (non-ER stress) conditions, GLI1 is repressed by a p97/VCP-HDAC1 complex while upon ER stress GLI1 is induced through a mechanism requiring both USF2 binding and increase histone acetylation at its promoter. Interestingly, the induction of GLI1 was independent of ligand-regulated Hh signaling. Further analysis showed that GLI1 cooperates with ATF6f to induce promoter activity and expression of XBP1, a key transcription factor driving UPR. Overall, our work demonstrates a novel role for GLI1 in the regulation of ER stress gene expression and defines the interplay between p97/VCP, HDAC1 and USF2 as essential players in this process.


Assuntos
Adenosina Trifosfatases , Proteínas Hedgehog , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
JCI Insight ; 7(22)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36256477

RESUMO

BACKGROUNDA patient-derived organoid (PDO) platform may serve as a promising tool for translational cancer research. In this study, we evaluated PDO's ability to predict clinical response to gastrointestinal (GI) cancers.METHODSWe generated PDOs from primary and metastatic lesions of patients with GI cancers, including pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, and cholangiocarcinoma. We compared PDO response with the observed clinical response for donor patients to the same treatments.RESULTSWe report an approximately 80% concordance rate between PDO and donor tumor response. Importantly, we found a profound influence of culture media on PDO phenotype, where we showed a significant difference in response to standard-of-care chemotherapies, distinct morphologies, and transcriptomes between media within the same PDO cultures.CONCLUSIONWhile we demonstrate a high concordance rate between donor tumor and PDO, these studies also showed the important role of culture media when using PDOs to inform treatment selection and predict response across a spectrum of GI cancers.TRIAL REGISTRATIONNot applicable.FUNDINGThe Joan F. & Richard A. Abdoo Family Fund in Colorectal Cancer Research, GI Cancer program of the Mayo Clinic Cancer Center, Mayo Clinic SPORE in Pancreatic Cancer, Center of Individualized Medicine (Mayo Clinic), Department of Laboratory Medicine and Pathology (Mayo Clinic), Incyte Pharmaceuticals and Mayo Clinic Hepatobiliary SPORE, University of Minnesota-Mayo Clinic Partnership, and the Early Therapeutic program (Department of Oncology, Mayo Clinic).


Assuntos
Neoplasias Gastrointestinais , Neoplasias Pancreáticas , Humanos , Meios de Cultura , Organoides/patologia , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
7.
Cells ; 10(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34685604

RESUMO

Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.


Assuntos
Núcleo Celular/metabolismo , Cromatina/química , Neoplasias Pancreáticas/patologia , Forma do Núcleo Celular , Humanos , Modelos Biológicos
8.
Cancers (Basel) ; 13(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298625

RESUMO

The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1-3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3ß, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3ß) or activate (Shh, Ihh, Dhh, SMO, GLI1-3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.

10.
Biochem J ; 477(17): 3131-3145, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32766732

RESUMO

The Hedgehog-regulated transcription factors GLI1 and GLI2 play overlapping roles in development and disease; however, the mechanisms underlying their interplay remain elusive. We report for the first time that GLI1 and GLI2 physically and functionally interact in cancer cells. GLI1 and GLI2 were shown to co-immunoprecipitate in PANC1 pancreatic cancer cells and RMS13 rhabdomyosarcoma cells. Mapping analysis demonstrated that the zinc finger domains of both proteins are required for their heteromerization. RNAi knockdown of either GLI1 or GLI2 inhibited expression of many well-characterized GLI target genes (BCL2, MYCN, PTCH2, IL7 and CCND1) in PANC1 cells, whereas PTCH1 expression was only inhibited by GLI1 depletion. qPCR screening of a large set of putative canonical and non-canonical Hedgehog/GLI targets identified further genes (e.g. E2F1, BMP1, CDK2) strongly down-regulated by GLI1 and/or GLI2 depletion in PANC1 cells, and demonstrated that ANO1, AQP1 and SOCS1 are up-regulated by knockdown of either GLI1 or GLI2. Chromatin immunoprecipitation showed that GLI1 and GLI2 occupied the same regions at the BCL2, MYCN and CCND1 promoters. Furthermore, depletion of GLI1 inhibited GLI2 occupancy at these promoters, suggesting that GLI1/GLI2 interaction is required for the recruitment of GLI2 to these sites. Together, these findings indicate that GLI1 and GLI2 co-ordinately regulate the transcription of some genes, and provide mechanistic insight into the roles of GLI proteins in carcinogenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/metabolismo , Rabdomiossarcoma/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Linhagem Celular Tumoral , Proteínas Hedgehog/genética , Humanos , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Multimerização Proteica , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/genética
11.
Nucleic Acids Res ; 48(13): 7169-7181, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32544250

RESUMO

The modulation of GLI2, an oncogenic transcription factor commonly upregulated in cancer, is in many cases not due to genetic defects, suggesting dysregulation through alternative mechanisms. The identity of these molecular events remains for the most part unknown. Here, we identified TFII-I as a novel repressor of GLI2 expression. Mapping experiments suggest that the INR region of the GLI2 promoter is necessary for GLI2 repression. ChIP studies showed that TFII-I binds to this INR. TFII-I knockdown decreased the binding of NELF-A, a component of the promoter-proximal pausing complex at this site, and enriched phosphorylated RNAPII serine 2 in the GLI2 gene body. Immunoprecipitation studies demonstrate TFII-I interaction with SPT5, another pausing complex component. TFII-I overexpression antagonized GLI2 induction by TGFß, a known activator of GLI2 in cancer cells. TGFß reduced endogenous TFII-I binding to the INR and increased RNAPII SerP2 in the gene body. We demonstrate that this regulatory mechanism is not exclusive of GLI2. TGFß-induced genes CCR7, TGFß1 and EGR3 showed similar decreased TFII-I and NELF-A INR binding and increased RNAPII SerP2 in the gene body post-TGFß treatment. Together these results identify TFII-I as a novel repressor of a subset of TGFß-responsive genes through the regulation of RNAPII pausing.


Assuntos
Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Células Hep G2 , Humanos , Regiões Promotoras Genéticas , Proteínas Repressoras/fisiologia , Transcrição Gênica , Ativação Transcricional
12.
Neurology ; 91(23): e2170-e2181, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30413633

RESUMO

OBJECTIVE: To identify novel genes involved in the etiology of intracranial aneurysms (IAs) or subarachnoid hemorrhages (SAHs) using whole-exome sequencing. METHODS: We performed whole-exome sequencing in 13 individuals from 3 families with an autosomal dominant IA/SAH inheritance pattern to look for candidate genes for disease. In addition, we sequenced PCNT exon 38 in a further 161 idiopathic patients with IA/SAH to find additional carriers of potential pathogenic variants. RESULTS: We identified 2 different variants in exon 38 from the PCNT gene shared between affected members from 2 different families with either IA or SAH (p.R2728C and p.V2811L). One hundred sixty-four samples with either SAH or IA were Sanger sequenced for the PCNT exon 38. Five additional missense mutations were identified. We also found a second p.V2811L carrier in a family with a history of neurovascular diseases. CONCLUSION: The PCNT gene encodes a protein that is involved in the process of microtubule nucleation and organization in interphase and mitosis. Biallelic loss-of-function mutations in PCNT cause a form of primordial dwarfism (microcephalic osteodysplastic primordial dwarfism type II), and ≈50% of these patients will develop neurovascular abnormalities, including IAs and SAHs. In addition, a complete Pcnt knockout mouse model (Pcnt -/-) published previously showed general vascular abnormalities, including intracranial hemorrhage. The variants in our families lie in the highly conserved PCNT protein-protein interaction domain, making PCNT a highly plausible candidate gene in cerebrovascular disease.


Assuntos
Antígenos/genética , Predisposição Genética para Doença/genética , Aneurisma Intracraniano/genética , Hemorragia Subaracnóidea/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Mutação Puntual , Sequenciamento do Exoma , Adulto Jovem
13.
JCO Precis Oncol ; 20172017.
Artigo em Inglês | MEDLINE | ID: mdl-30761385

RESUMO

PURPOSE: Genomic testing has increased the quantity of information available to oncologists. Unfortunately, many identified sequence alterations are variants of unknown significance (VUSs), which thus limit the clinician's ability to use these findings to inform treatment. We applied a combination of in silico prediction and molecular modeling tools and laboratory techniques to rapidly define actionable VUSs. MATERIALS AND METHODS: Exome sequencing was conducted on 308 tumors from various origins. Most single nucleotide alterations within gene coding regions were VUSs. These VUSs were filtered to identify a subset of therapeutically targetable genes that were predicted with in silico tools to be altered in function by their variant sequence. A subset of receptor tyrosine kinase VUSs was characterized by laboratory comparison of each VUS versus its wild-type counterpart in terms of expression and signaling activity. RESULTS: The study identified 4,327 point mutations of which 3,833 were VUSs. Filtering for mutations in genes that were therapeutically targetable and predicted to affect protein function reduced these to 522VUSs of interest, including a large number of kinases. Ten receptortyrosine kinase VUSs were selected to explore in the laboratory. Of these, seven were found to be functionally altered. Three VUSs (FGFR2 F276C, FGFR4 R78H, and KDR G539R) showed increased basal or ligand-stimulated ERK phosphorylation compared with their wild-type counterparts, which suggests that they support transformation. Treatment of a patient who carried FGFR2 F276C with an FGFR inhibitor resulted in significant and sustained tumor response with clinical benefit. CONCLUSION: The findings demonstrate the feasibility of rapid identification of the biologic relevance of somatic mutations, which thus advances clinicians' ability to make informed treatment decisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA