Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 873: 162312, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36805066

RESUMO

Pesticides are widely used in agriculture to optimise food production. However, the movement of pesticides into water bodies negatively impacts aquatic environments. The European Union (EU) aims to make food systems fair, healthy and environmentally friendly through its current Farm to Fork strategy. As part of this strategy, the EU plans to reduce the overall use and risk of chemical pesticides by 50 % by 2030. The attainment of this target may be compromised by the prevalence of legacy pesticides arising from historical applications to land, which can persist in the environment for several decades. The current EU Farm to Fork policy overlooks the potential challenges of legacy pesticides and requirements for their remediation. In this review, the current knowledge regarding pesticide use in Europe, as well as pathways of pesticide movement to waterways, are investigated. The issues of legacy pesticides, including exceedances, are examined, and existing and emerging methods of pesticide remediation, particularly of legacy pesticides, are discussed. The fact that some legacy pesticides can be detected in water samples, more than twenty-five years after they were prohibited, highlights the need for improved EU strategies and policies aimed at targeting legacy pesticides in order to meet future targets.


Assuntos
Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Objetivos , Poluentes Químicos da Água/análise , Agricultura , Europa (Continente) , Água
2.
Sci Total Environ ; 829: 154532, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35302029

RESUMO

This paper presents a novel scoring system which facilitates a relative ranking of pesticide risk to human health arising from contaminated drinking water. This method was developed to identify risky pesticides to better inform monitoring programmes and risk assessments. Potential risk was assessed considering pesticide use, chronic human health effects and environmental fate. Site-specific soil conditions, such as soil erodibility, hydrologic group, soil depth, clay, sand, silt, and organic carbon content of soil, were incorporated to demonstrate how pesticide fate can be influenced by the areas in which they are used. The indices of quantity of use, consequence and likelihood of exposure, hazard score and quantity-weighted hazard score were used to describe the level of concern that should be attributed to a pesticide. Metabolite toxicity and persistence were also considered in a separate scoring to highlight the contribution metabolites make to overall pesticide risk. This study presents two sets of results for 63 pesticides in an Irish case study, (1) risk scores calculated for the parent compounds only and (2) a combined pesticide-metabolite risk score. In both cases the results are assessed for two locations with differing soil and hydrological properties. The method developed in this paper can be adapted by pesticide users to assess and compare pesticide risk at site level using pesticide hazard scores. Farm advisors, water quality monitors, and catchment managers can apply this method to screen pesticides for human health risk at a regional or national level.


Assuntos
Água Potável , Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Praguicidas/análise , Praguicidas/toxicidade , Solo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Poluição da Água , Qualidade da Água
3.
Water Res ; 189: 116606, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189975

RESUMO

Photo-activated sludge (PAS) systems are an emerging wastewater treatment technology where microalgae provide oxygen to bacteria without the need for external aeration. There is limited knowledge on the optimal conditions for enhanced biological phosphorus removal (EBPR) in systems containing a mixture of polyphosphate accumulating organisms (PAOs) and microalgae. This research aimed to study the effects of substrate composition and light intensity on the performance of a laboratory-scale EBPR-PAS system. Initially, a model-based design was developed to study the effect of organic carbon (COD), inorganic carbon (HCO3) and ammonium-nitrogen (NH4-N) in nitrification deprived conditions on phosphorus (P) removal. Based on the mathematical model, two different synthetic wastewater compositions (COD:HCO3:NH4-N: 10:20:1 and 10:10:4) were examined at a light intensity of 350 µmol m-2 sec-1. Add to this, the performance of the system was also investigated at light intensities: 87.5, 175, and 262.5 µmol m-2 sec-1 for short terms. Results showed that wastewater having a high level of HCO3 and low level of NH4-N (ratio of 10:20:1) favored only microalgal growth, and had poor P removal due to a shortage of NH4-N for PAOs growth. However, lowering the HCO3 level and increasing the NH4-N level (ratio of 10:10:4) balanced PAOs and microalgae symbiosis, and had a positive influence on P removal. Under this mode of operation, the system was able to operate without external aeration and achieved a net P removal of 10.33 ±1.45 mg L-1 at an influent COD of 100 mg L-1. No significant variation was observed in the reactor performance for different light intensities, indicating the EBPR-PAS system can be operated at low light intensities with a positive influence on P removal.


Assuntos
Fósforo , Esgotos , Reatores Biológicos , Nitrificação , Nitrogênio , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA