Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Hypertension ; 81(6): 1332-1344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629290

RESUMO

BACKGROUND: ANG (angiotensin II) elicits dipsogenic and pressor responses via activation of the canonical Gαq (G-protein component of the AT1R [angiotensin type 1 receptor])-mediated AT1R in the subfornical organ. Recently, we demonstrated that ARRB2 (ß-arrestin 2) global knockout mice exhibit a higher preference for salt and exacerbated pressor response to deoxycorticosterone acetate salt. However, whether ARRB2 within selective neuroanatomical nuclei alters physiological responses to ANG is unknown. Therefore, we hypothesized that ARRB2, specifically in the subfornical organ, counterbalances maladaptive dipsogenic and pressor responses to the canonical AT1R signaling. METHODS: Male and female Arrb2FLOX mice received intracerebroventricular injection of either adeno-associated virus (AAV)-Cre-GFP (green fluorescent protein) to induce brain-specific deletion of ARRB2 (Arrb2ICV-Cre). Arrb2FLOX mice receiving ICV-AAV-GFP were used as control (Arrb2ICV-Control). Infection with ICV-AAV-Cre primarily targeted the subfornical organ with few off targets. Fluid intake was evaluated using the 2-bottle choice paradigm with 1 bottle containing water and 1 containing 0.15 mol/L NaCl. RESULTS: Arrb2ICV-Cre mice exhibited a greater pressor response to acute ICV-ANG infusion. At baseline conditions, Arrb2ICV-Cre mice exhibited a significant increase in saline intake compared with controls, resulting in a saline preference. Furthermore, when mice were subjected to water-deprived or sodium-depleted conditions, which would naturally increase endogenous ANG levels, Arrb2ICV-Cre mice exhibited elevated saline intake. CONCLUSIONS: Overall, these data indicate that ARRB2 in selective cardiovascular nuclei in the brain, including the subfornical organ, counterbalances canonical AT1R responses to both exogenous and endogenous ANG. Stimulation of the AT1R/ARRB axis in the brain may represent a novel strategy to treat hypertension.


Assuntos
Pressão Sanguínea , Homeostase , Órgão Subfornical , beta-Arrestina 2 , Animais , Órgão Subfornical/metabolismo , Camundongos , Pressão Sanguínea/fisiologia , Pressão Sanguínea/genética , Masculino , Homeostase/fisiologia , beta-Arrestina 2/metabolismo , beta-Arrestina 2/genética , Feminino , Camundongos Knockout , Angiotensina II/farmacologia , Encéfalo/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo
2.
Sci Adv ; 10(7): eadj7481, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354249

RESUMO

Exercise promotes pulsatile shear stress in the arterial circulation and ameliorates cardiometabolic diseases. However, exercise-mediated metabolic transducers for vascular protection remain under-investigated. Untargeted metabolomic analysis demonstrated that wild-type mice undergoing voluntary wheel running exercise expressed increased endothelial stearoyl-CoA desaturase 1 (SCD1) that catalyzes anti-inflammatory lipid metabolites, namely, oleic (OA) and palmitoleic acids (PA), to mitigate NF-κB-mediated inflammatory responses. In silico analysis revealed that exercise augmented time-averaged wall shear stress but mitigated flow recirculation and oscillatory shear index in the lesser curvature of the mouse aortic arch. Following exercise, endothelial Scd1-deleted mice (Ldlr-/- Scd1EC-/-) on high-fat diet developed persistent VCAM1-positive endothelium in the lesser curvature and the descending aorta, whereas SCD1 overexpression via adenovirus transfection mitigated endoplasmic reticulum stress and inflammatory biomarkers. Single-cell transcriptomics of the aorta identified Scd1-positive and Vcam1-negative endothelial subclusters interacting with other candidate genes. Thus, exercise mitigates flow recirculation and activates endothelial SCD1 to catalyze OA and PA for vascular endothelial protection.


Assuntos
Aorta , Atividade Motora , Animais , Camundongos , Aorta/metabolismo , Dieta Hiperlipídica , Endotélio Vascular/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
3.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205360

RESUMO

Exercise modulates vascular plasticity in multiple organ systems; however, the metabolomic transducers underlying exercise and vascular protection in the disturbed flow-prone vasculature remain under-investigated. We simulated exercise-augmented pulsatile shear stress (PSS) to mitigate flow recirculation in the lesser curvature of the aortic arch. When human aortic endothelial cells (HAECs) were subjected to PSS ( τ ave = 50 dyne·cm -2 , ∂τ/∂t = 71 dyne·cm -2 ·s -1 , 1 Hz), untargeted metabolomic analysis revealed that Stearoyl-CoA Desaturase (SCD1) in the endoplasmic reticulum (ER) catalyzed the fatty acid metabolite, oleic acid (OA), to mitigate inflammatory mediators. Following 24 hours of exercise, wild-type C57BL/6J mice developed elevated SCD1-catalyzed lipid metabolites in the plasma, including OA and palmitoleic acid (PA). Exercise over a 2-week period increased endothelial SCD1 in the ER. Exercise further modulated the time-averaged wall shear stress (TAWSS or τ ave) and oscillatory shear index (OSI ave ), upregulated Scd1 and attenuated VCAM1 expression in the disturbed flow-prone aortic arch in Ldlr -/- mice on high-fat diet but not in Ldlr -/- Scd1 EC-/- mice. Scd1 overexpression via recombinant adenovirus also mitigated ER stress. Single cell transcriptomic analysis of the mouse aorta revealed interconnection of Scd1 with mechanosensitive genes, namely Irs2 , Acox1 and Adipor2 that modulate lipid metabolism pathways. Taken together, exercise modulates PSS ( τ ave and OSI ave ) to activate SCD1 as a metabolomic transducer to ameliorate inflammation in the disturbed flow-prone vasculature.

4.
J Cell Sci ; 132(21)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31636116

RESUMO

Cyclin E and its binding partner Cdk2 control the G1/S transition in mammalian cells. Increased levels of cyclin E are found in some cancers. Additionally, proteolytic removal of the cyclin E N-terminus occurs in some cancers and is associated with increased cyclin E-Cdk2 activity and poor clinical prognosis. Cyclin E levels are tightly regulated and controlled in part through ubiquitin-mediated degradation initiated by one of two E3 ligases, Cul1 and Cul3. Cul1 ubiquitylates phosphorylated cyclin E, but the mechanism through which Cul3 ubiquitylates cyclin E is poorly understood. In experiments to ascertain how Cul3 mediates cyclin E destruction, we identified a degron on cyclin E that Cul3 targets for ubiquitylation. Recognition of the degron and binding of Cul3 does not require a BTB domain-containing adaptor protein. Additionally, this degron is lacking in N-terminally truncated cyclin E. Our results describe a mechanism whereby N-terminally truncated cyclin E can avoid the Cul3-mediated degradation pathway. This mechanism helps to explain the increased activity that is associated with the truncated cyclin E variants that occurs in some cancers.


Assuntos
Proteínas Culina/metabolismo , Ciclina E/metabolismo , Proteínas Oncogênicas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Humanos , Ligação Proteica , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia
5.
JCI Insight ; 2(24)2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29263298

RESUMO

Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine [K] Kinase 4 (WNK4), with excessive activation of the downstream Sterile 20 (STE20)/SPS-1-related proline/alanine-rich kinase (SPAK) increasing phosphorylation of the Na+-Cl- cotransporter (NCC). CUL3-Δ9 promotes its own degradation via autoubiquitination, leading to the hypothesis that Cul3 haploinsufficiency causes FHHt. To directly test this, we generated Cul3 heterozygous mice (CUL3-Het), and Cul3 heterozygotes also expressing CUL3-Δ9 (CUL3-Het/Δ9), using an inducible renal epithelial-specific system. Endogenous CUL3 was reduced to 50% in both models, and consistent with autoubiquitination, CUL3-Δ9 protein was undetectable in CUL3-Het/Δ9 kidneys unless primary renal epithelia cells were cultured. Abundances of WNK4 and phosphorylated NCC did not differ between control and CUL3-Het mice, but they were elevated in CUL3-Het/Δ9 mice, which also displayed higher plasma [K+] and blood pressure. Abundance of phosphorylated Na+-K+-2Cl- cotransporter (NKCC2) was also increased, which may contribute to the severity of CUL3-Δ9-mediated FHHt. WNK4 and SPAK localized to puncta in NCC-positive segments but not in NKCC2-positive segments, suggesting differential effects of CUL3-Δ9. These results indicate that Cul3 haploinsufficiency does not cause FHHt, but dominant effects of CUL3-Δ9 are required.


Assuntos
Proteínas Culina/genética , Proteínas Culina/metabolismo , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/metabolismo , Animais , Pressão Sanguínea/genética , Células Cultivadas , Células Epiteliais , Feminino , Haploinsuficiência , Heterozigoto , Rim/metabolismo , Masculino , Camundongos , Mutação , Fosforilação , Potássio/sangue , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/fisiopatologia , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Ubiquitinação , Proteína Wnt4/metabolismo
6.
Hypertension ; 70(3): 559-565, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28674038

RESUMO

Pharmacological activation of PPAR-γ (peroxisome proliferator-activated receptor-γ) protects the vasculature. Much less is known on the cell-specific impact of PPAR-γ when driven by endogenous ligands. Recently, we found that endothelial PPAR-γ protects against angiotensin II-induced endothelial dysfunction. Here, we explored that concept further examining whether effects were sex dependent along with underlying mechanisms. We studied mice expressing a human dominant-negative mutation in PPAR-γ driven by the endothelial-specific vascular cadherin promoter (E-V290M), using nontransgenic littermates as controls. Acetylcholine (an endothelium-dependent agonist) produced similar relaxation of carotid arteries from nontransgenic and E-V290M mice. Incubation of isolated arteries with angiotensin II (1 nmol/L) overnight had no effect in nontransgenic, but reduced responses to acetylcholine by about 50% in male and female E-V290M mice (P<0.05). Endothelial function in E-V290M mice was restored to normal by inhibitors of superoxide (tempol), NADPH oxidase (VAS-2870), Rho kinase (Y-27632), ROCK2 (SLX-2119), NF-κB (nuclear factor-kappa B essential modulator-binding domain peptide), or interleukin-6 (neutralizing antibody). In addition, we hypothesized that PPAR-γ may influence the angiotensin 1-7 arm of the renin-angiotensin system. In the basilar artery, dilation to angiotensin 1-7 was selectively reduced in E-V290M mice by >50% (P<0.05), an effect reversed by Y-27632. Thus, effects of angiotensin II are augmented by interference with endothelial PPAR-γ through sex-independent mechanisms, involving oxidant-inflammatory signaling and ROCK2 (Rho kinase). The study also provides the first evidence that endothelial PPAR-γ interacts with angiotensin 1-7 responses. These critical roles for endothelial PPAR-γ have implications for pathophysiology and therapeutic approaches for vascular disease.


Assuntos
Angiotensina II , Angiotensina I , PPAR gama/metabolismo , Fragmentos de Peptídeos , Doenças Vasculares , Vasodilatação , Amidas , Angiotensina I/metabolismo , Angiotensina I/farmacologia , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Animais Geneticamente Modificados , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Feminino , Interleucina-6/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Piridinas , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Doenças Vasculares/metabolismo , Doenças Vasculares/fisiopatologia , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
7.
Hypertension ; 70(1): 174-182, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28507170

RESUMO

Selective expression of dominant negative (DN) peroxisome proliferator-activated receptor γ (PPARγ) in vascular smooth muscle cells (SMC) results in hypertension, atherosclerosis, and increased nuclear factor-κB (NF-κB) target gene expression. Mesenteric SMC were cultured from mice designed to conditionally express wild-type (WT) or DN-PPARγ in response to Cre recombinase to determine how SMC PPARγ regulates expression of NF-κB target inflammatory genes. SMC-specific overexpression of WT-PPARγ or agonist-induced activation of endogenous PPARγ blunted tumor necrosis factor α (TNF-α)-induced NF-κB target gene expression and activity of an NF-κB-responsive promoter. TNF-α-induced gene expression responses were enhanced by DN-PPARγ in SMC. Although expression of NF-κB p65 was unchanged, nuclear export of p65 was accelerated by WT-PPARγ and prevented by DN-PPARγ in SMC. Leptomycin B, a nuclear export inhibitor, blocked p65 nuclear export and inhibited the anti-inflammatory action of PPARγ. Consistent with a role in facilitating p65 nuclear export, WT-PPARγ coimmunoprecipitated with p65, and WT-PPARγ was also exported from the nucleus after TNF-α treatment. Conversely, DN-PPARγ does not bind to p65 and was retained in the nucleus after TNF-α treatment. Transgenic mice expressing WT-PPARγ or DN-PPARγ specifically in SMC (S-WT or S-DN) were bred with mice expressing luciferase controlled by an NF-κB-responsive promoter to assess effects on NF-κB activity in whole tissue. TNF-α-induced NF-κB activity was decreased in aorta and carotid artery from S-WT but was increased in vessels from S-DN mice. We conclude that SMC PPARγ blunts expression of proinflammatory genes by inhibition of NF-κB activity through a mechanism promoting nuclear export of p65, which is abolished by DN mutation in PPARγ.


Assuntos
Hipertensão , Músculo Liso Vascular , NF-kappa B , PPAR gama/genética , Fator de Transcrição RelA/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Núcleo Celular/metabolismo , Células Cultivadas , Ácidos Graxos Insaturados/farmacologia , Hipertensão/genética , Hipertensão/metabolismo , Inflamação/genética , Inflamação/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Mutação , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Physiol Genomics ; 48(7): 491-501, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199455

RESUMO

Peroxisome proliferator-activated receptor-γ (PPARγ), a master regulator of adipogenesis, was recently shown to affect energy homeostasis through its actions in the brain. Deletion of PPARγ in mouse brain, and specifically in the pro-opiomelanocortin (POMC) neurons, results in resistance to diet-induced obesity. To study the mechanisms by which PPARγ in POMC neurons controls energy balance, we constructed a Cre-recombinase-dependent conditionally activatable transgene expressing either wild-type (WT) or dominant-negative (P467L) PPARγ and the tdTomato reporter. Inducible expression of both forms of PPARγ was validated in cells in culture, in liver of mice infected with an adenovirus expressing Cre-recombinase (AdCre), and in the brain of mice expressing Cre-recombinase either in all neurons (NES(Cre)/PPARγ-P467L) or selectively in POMC neurons (POMC(Cre)/PPARγ-P467L). Whereas POMC(Cre)/PPARγ-P467L mice exhibited a normal pattern of weight gain when fed 60% high-fat diet, they exhibited increased weight gain and fat mass accumulation in response to a 10% fat isocaloric-matched control diet. POMC(Cre)/PPARγ-P467L mice were leptin sensitive on control diet but became leptin resistant when fed 60% high-fat diet. There was no difference in body weight between POMC(Cre)/PPARγ-WT mice and controls in response to 60% high-fat diet. However, POMC(Cre)/PPARγ-WT, but not POMC(Cre)/PPARγ-P467L, mice increased body weight in response to rosiglitazone, a PPARγ agonist. These observations support the concept that alterations in PPARγ-driven mechanisms in POMC neurons can play a role in the regulation of metabolic homeostasis under certain dietary conditions.


Assuntos
Metabolismo Energético/fisiologia , Homeostase/fisiologia , Neurônios/metabolismo , PPAR gama/metabolismo , Pró-Opiomelanocortina/metabolismo , Células 3T3 , Adipogenia/efeitos dos fármacos , Adipogenia/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiologia , Linhagem Celular , Dieta Hiperlipídica/métodos , Metabolismo Energético/efeitos dos fármacos , Feminino , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Leptina/metabolismo , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/fisiopatologia , PPAR gama/agonistas , Rosiglitazona , Tiazolidinedionas/farmacologia , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/fisiologia
9.
Hypertension ; 67(5): 992-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26928806

RESUMO

Enzymatic cleavage of angiotensinogen by renin represents the critical rate-limiting step in the production of angiotensin II, but the mechanisms regulating the initial expression of the renin gene remain incomplete. The purpose of this study is to unravel the molecular mechanism controlling renin expression. We identified a subset of nuclear receptors that exhibited an expression pattern similar to renin by reanalyzing a publicly available microarray data set. Expression of some of these nuclear receptors was similarly regulated as renin in response to physiological cues, which are known to regulate renin. Among these, only estrogen receptor α (ERα) and hepatic nuclear factor α have no known function in regulating renin expression. We determined that ERα is essential for the maintenance of renin expression by transfection of small interfering RNAs targeting Esr1, the gene encoding ERα, in renin-expressing As4.1 cells. We also observed that previously characterized negative regulators of renin expression, Nr2f2 and vitamin D receptor, exhibited elevated expression in response to ERα inhibition. Therefore, we tested whether ERα regulates renin expression through an interaction with Nr2f2 and vitamin D receptor. Renin expression did not return to baseline when we concurrently suppressed both Esr1 and Nr2f2 or Esr1 and vitamin D receptor mRNAs, strongly suggesting that Esr1 regulates renin expression independent of Nr2f2 and vitamin D receptor. ERα directly binds to the hormone response element within the renin enhancer region. We conclude that ERα is a previously unknown regulator of renin that directly binds to the renin enhancer hormone response element sequence and is critical in maintaining renin expression in renin-expressing As4.1 cells.


Assuntos
Receptor alfa de Estrogênio/genética , Regulação da Expressão Gênica/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Renina/genética , Transcrição Gênica/efeitos dos fármacos , Análise de Variância , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Receptor alfa de Estrogênio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/análise , Distribuição Aleatória , Renina/metabolismo , Sensibilidade e Especificidade , Transfecção
10.
Am J Physiol Heart Circ Physiol ; 310(1): H39-48, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26566726

RESUMO

Loss of peroxisome proliferator-activated receptor (PPAR)-γ function in the vascular endothelium enhances atherosclerosis and NF-κB target gene expression in high-fat diet-fed apolipoprotein E-deficient mice. The mechanisms by which endothelial PPAR-γ regulates inflammatory responses and protects against atherosclerosis remain unclear. To assess functional interactions between PPAR-γ and inflammation, we used a model of IL-1ß-induced aortic dysfunction in transgenic mice with endothelium-specific overexpression of either wild-type (E-WT) or dominant negative PPAR-γ (E-V290M). IL-1ß dose dependently decreased IκB-α, increased phospho-p65, and increased luciferase activity in the aorta of NF-κB-LUC transgenic mice. IL-1ß also dose dependently reduced endothelial-dependent relaxation by ACh. The loss of ACh responsiveness was partially improved by pretreatment of the vessels with the PPAR-γ agonist rosiglitazone or in E-WT. Conversely, IL-1ß-induced endothelial dysfunction was worsened in the aorta from E-V290M mice. Although IL-1ß increased the expression of NF-κB target genes, NF-κB p65 inhibitor did not alleviate endothelial dysfunction induced by IL-1ß. Tempol, a SOD mimetic, partially restored ACh responsiveness in the IL-1ß-treated aorta. Notably, tempol only modestly improved protection in the E-WT aorta but had an increased protective effect in the E-V290M aorta compared with the aorta from nontransgenic mice, suggesting that PPAR-γ-mediated protection involves antioxidant effects. IL-1ß increased ROS and decreased the phospho-endothelial nitric oxide synthase (Ser(1177))-to-endothelial nitric oxide synthase ratio in the nontransgenic aorta. These effects were completely abolished in the aorta with endothelial overexpression of WT PPAR-γ but were worsened in the aorta with E-V290M even in the absence of IL-1ß. We conclude that PPAR-γ protects against IL-1ß-mediated endothelial dysfunction through a reduction of oxidative stress responses but not by blunting IL-1ß-mediated NF-κB activity.


Assuntos
Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Interleucina-1beta/farmacologia , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Animais , Antioxidantes/farmacologia , Aorta/metabolismo , Aorta/patologia , Aorta/fisiopatologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Regulação da Expressão Gênica , Genótipo , Humanos , Proteínas I-kappa B/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidor de NF-kappaB alfa , Óxido Nítrico Sintase Tipo III/metabolismo , PPAR gama/agonistas , PPAR gama/genética , Fenótipo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
11.
Hypertension ; 66(1): 211-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25916724

RESUMO

Vascular inflammation plays a critical role in the pathogenesis of cerebral aneurysms. Peroxisome proliferator-activated receptor γ (PPARγ) protects against vascular inflammation and atherosclerosis, whereas dominant-negative mutations in PPARγ promote atherosclerosis and vascular dysfunction. We tested the role of PPARγ in aneurysm formation and rupture. Aneurysms were induced with a combination of systemic infusion of angiotensin-II and local injection of elastase in (1) mice that received the PPARγ antagonist GW9662 or the PPARγ agonist pioglitazone, (2) mice carrying dominant-negative PPARγ mutations in endothelial or smooth muscle cells, and (3) mice that received the Cullin inhibitor MLN4924. Incidence of aneurysm formation, rupture, and mortality was quantified. Cerebral arteries were analyzed for expression of Cullin3, Kelch-like ECH-associated protein 1, nuclear factor (erythroid-derived 2)-like 2, NAD(P)H dehydrogenase (quinone)1 (NQO1), and inflammatory marker mRNAs. Neither pioglitazone nor GW9662 altered the incidence of aneurysm formation. GW9662 significantly increased the incidence of aneurysm rupture, whereas pioglitazone tended to decrease the incidence of rupture. Dominant-negative endothelial-specific PPARγ did not alter the incidence of aneurysm formation or rupture. In contrast, dominant-negative smooth muscle-specific PPARγ resulted in an increase in aneurysm formation (P<0.05) and rupture (P=0.05). Dominant-negative smooth muscle-specific PPARγ, but not dominant-negative endothelial-specific PPARγ, resulted in significant decreases in expression of genes encoding Cullin3, Kelch-like ECH-associated protein 1, and nuclear factor (erythroid-derived 2)-like 2, along with significant increases in tumor necrosis factor-α, monocyte chemoattractant protein-1, chemokine (C-X-C motif) ligand 1, CD68, matrix metalloproteinase-3, -9, and -13. MLN4924 did not alter incidence of aneurysm formation, but increased the incidence of rupture (P<0.05). In summary, endogenous PPARγ, specifically smooth muscle PPARγ, plays an important role in protecting from formation and rupture of experimental cerebral aneurysms in mice.


Assuntos
Aneurisma Roto/fisiopatologia , Aneurisma Intracraniano/fisiopatologia , PPAR gama/fisiologia , Aneurisma Roto/genética , Angiotensina II/toxicidade , Anilidas/farmacologia , Anilidas/toxicidade , Animais , Artérias Cerebrais/metabolismo , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica/fisiologia , Genes Dominantes , Hipertensão/induzido quimicamente , Hipertensão/complicações , Mediadores da Inflamação/metabolismo , Aneurisma Intracraniano/induzido quimicamente , Aneurisma Intracraniano/genética , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Mutação , Miócitos de Músculo Liso/metabolismo , Especificidade de Órgãos , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , PPAR gama/deficiência , PPAR gama/genética , Elastase Pancreática/toxicidade , Pioglitazona , Hemorragia Subaracnóidea/etiologia , Hemorragia Subaracnóidea/prevenção & controle , Tiazolidinedionas/farmacologia , Regulação para Cima , Vasculite/complicações , Vasculite/genética , Vasculite/metabolismo , Vasculite/patologia
12.
Hypertension ; 65(6): 1341-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25895586

RESUMO

Endoplasmic reticulum stress has become an important mechanism in hypertension. We examined the role of endoplasmic reticulum stress in mediating the increased saline-intake and hypertensive effects in response to deoxycorticosterone acetate (DOCA)-salt. Intracerebroventricular delivery of the endoplasmic reticulum stress-reducing chemical chaperone tauroursodeoxycholic acid did not affect the magnitude of hypertension, but markedly decreased saline-intake in response to DOCA-salt. Increased saline-intake returned after tauroursodeoxycholic acid was terminated. Decreased saline-intake was also observed after intracerebroventricular infusion of 4-phenylbutyrate, another chemical chaperone. Immunoreactivity to CCAAT homologous binding protein, a marker of irremediable endoplasmic reticulum stress, was increased in the subfornical organ and supraoptic nucleus of DOCA-salt mice, but the signal was absent in control and CCAAT homologous binding protein-deficient mice. Electron microscopy revealed abnormalities in endoplasmic reticulum structure (decrease in membrane length, swollen membranes, and decreased ribosome numbers) in the subfornical organ consistent with endoplasmic reticulum stress. Subfornical organ-targeted adenoviral delivery of GRP78, a resident endoplasmic reticulum chaperone, decreased DOCA-salt-induced saline-intake. The increase in saline-intake in response to DOCA-salt was blunted in CCAAT homologous binding protein-deficient mice, but these mice exhibited a normal hypertensive response. We conclude that (1) brain endoplasmic reticulum stress mediates the saline-intake, but not blood pressure response to DOCA-salt, (2) DOCA-salt causes endoplasmic reticulum stress in the subfornical organ, which when attenuated by GRP78 blunts saline-intake, and (3) CCAAT homologous binding protein may play a functional role in DOCA-salt-induced saline-intake. The results suggest a mechanistic distinction between the importance of endoplasmic reticulum stress in mediating effects of DOCA-salt on saline-intake and blood pressure.


Assuntos
Encéfalo/metabolismo , Acetato de Desoxicorticosterona/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipertensão/fisiopatologia , Cloreto de Sódio/farmacologia , Análise de Variância , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/fisiologia , Infusões Intraventriculares , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Valores de Referência , Sensibilidade e Especificidade , Cloreto de Sódio/metabolismo , Estatísticas não Paramétricas , Órgão Subfornical/efeitos dos fármacos , Órgão Subfornical/fisiopatologia
13.
Am J Physiol Regul Integr Comp Physiol ; 307(4): R376-86, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24965793

RESUMO

Increased activity of the renin-angiotensin system within the brain elevates fluid intake, blood pressure, and resting metabolic rate. Renin and angiotensinogen are coexpressed within the same cells of the subfornical organ, and the production and action of ANG II through the ANG II type 1 receptor in the subfornical organ (SFO) are necessary for fluid intake due to increased activity of the brain renin-angiotensin system. We generated an inducible model of ANG II production by breeding transgenic mice expressing human renin in neurons controlled by the synapsin promoter with transgenic mice containing a Cre-recombinase-inducible human angiotensinogen construct. Adenoviral delivery of Cre-recombinase causes SFO-selective induction of human angiotensinogen expression. Selective production of ANG II in the SFO results in increased water intake but did not change blood pressure or resting metabolic rate. The increase in water intake was ANG II type 1 receptor-dependent. When given a choice between water and 0.15 M NaCl, these mice increased total fluid and sodium, but not water, because of an increased preference for NaCl. When provided a choice between water and 0.3 M NaCl, the mice exhibited increased fluid, water, and sodium intake, but no change in preference for NaCl. The increase in fluid intake was blocked by an inhibitor of PKC, but not ERK, and was correlated with increased phosphorylated cyclic AMP response element binding protein in the subfornical organ. Thus, increased production and action of ANG II specifically in the subfornical organ are sufficient on their own to mediate an increase in drinking through PKC.


Assuntos
Angiotensinogênio/metabolismo , Ingestão de Líquidos , Sistema Renina-Angiotensina , Renina/metabolismo , Órgão Subfornical/enzimologia , Angiotensinogênio/genética , Animais , Comportamento Animal , Pressão Sanguínea , Proteína de Ligação a CREB/metabolismo , Ingestão de Líquidos/efeitos dos fármacos , Comportamento de Ingestão de Líquido , Metabolismo Energético , Feminino , Humanos , Integrases/genética , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Regiões Promotoras Genéticas , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Renina/genética , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/genética , Transdução de Sinais , Cloreto de Sódio/administração & dosagem , Órgão Subfornical/efeitos dos fármacos , Sinapsinas/genética , Fatores de Tempo
14.
Hypertension ; 64(1): 141-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24777977

RESUMO

Angiotensin-II production in the subfornical organ acting through angiotensin-II type-1 receptors is necessary for polydipsia, resulting from elevated renin-angiotensin system activity. Protein kinase C and mitogen-activated protein kinase pathways have been shown to mediate effects of angiotensin-II in the brain. We investigated mechanisms that mediate brain angiotensin-II-induced polydipsia. We used double-transgenic sRA mice, consisting of human renin controlled by the neuron-specific synapsin promoter crossed with human angiotensinogen controlled by its endogenous promoter, which results in brain-specific overexpression of angiotensin-II, particularly in the subfornical organ. We also used the deoxycorticosterone acetate-salt model of hypertension, which exhibits polydipsia. Inhibition of protein kinase C, but not extracellular signal-regulated kinases, protein kinase A, or vasopressin V1A and V2 receptors, corrected the elevated water intake of sRA mice. Using an isoform selective inhibitor and an adenovirus expressing dominant negative protein kinase C-α revealed that protein kinase C-α in the subfornical organ was necessary to mediate elevated fluid and sodium intake in sRA mice. Inhibition of protein kinase C activity also attenuated polydipsia in the deoxycorticosterone acetate-salt model. We provide evidence that inducing protein kinase C activity centrally is sufficient to induce water intake in water-replete wild-type mice, and that cell surface localization of protein kinase C-α can be induced in cultured cells from the subfornical organ. These experimental findings demonstrate a role for central protein kinase C activity in fluid balance, and further mechanistically demonstrate the importance of protein kinase C-α signaling in the subfornical organ in fluid intake stimulated by angiotensin-II in the brain.


Assuntos
Encéfalo/metabolismo , Ingestão de Líquidos/fisiologia , Proteína Quinase C-alfa/metabolismo , Sistema Renina-Angiotensina/fisiologia , Órgão Subfornical/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Feminino , Hipertensão/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteína Quinase C-alfa/antagonistas & inibidores , Sistema Renina-Angiotensina/efeitos dos fármacos , Órgão Subfornical/efeitos dos fármacos
15.
Hypertension ; 62(1): 41-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23648704

RESUMO

The angiotensinogen gene is genetically linked with hypertension, but the mechanistic basis for association of sequence variants in the promoter and coding region of the gene remains unclear. An E-box at position -20 has been hypothesized to control the level of angiotensinogen expression, but its mechanistic importance for angiotensinogen expression in human tissues is uncertain. We developed an allele-specific polymerase chain reaction-based assay to distinguish between angiotensinogen mRNA derived from variants at the -20 position (rs5050) in the angiotensinogen promoter in adipose tissues obtained during surgery. The assay takes advantage of linkage disequilibrium between the rs5050 (located in the promoter) and rs4762 (located in the coding region) single nucleotide polymorphisms. This strategy allowed us to assess the level of allele-specific expression in A-20C heterozygous subjects comparing the relative proportion of each allele with the total, thus eliminating the problem of variability in the level of total angiotensinogen mRNA among subjects. We show that angiotensinogen mRNA derived from the -20C allele is expressed significantly higher than that derived from the -20A allele in subcutaneous adipose tissue, and increased expression correlates with enriched chromatin binding of upstream stimulatory factor-2 to the -20C E-box compared with -20A. This may be depot selective because we were unable to detect these differences in omental adipose. This provides the first data directly comparing expression of angiotensinogen mRNA and differential transcription factor binding derived from 2 variant alleles in human tissue where the ratio of expression of one allele to another can be accurately determined.


Assuntos
Angiotensinogênio/genética , Regulação da Expressão Gênica , Obesidade/genética , RNA Mensageiro/genética , Adulto , Alelos , Angiotensinogênio/biossíntese , Feminino , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação , Masculino , Obesidade/metabolismo , Obesidade/patologia , Regiões Promotoras Genéticas , Gordura Subcutânea/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 33(3): 523-32, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23288158

RESUMO

OBJECTIVE: Development of calcific aortic valve stenosis involves multiple signaling pathways, which may be modulated by peroxisome proliferator-activated receptor-γ). This study tested the hypothesis that pioglitazone (Pio), a ligand for peroxisome proliferator-activated receptor-γ, inhibits calcification of the aortic valve in hypercholesteremic mice. METHODS AND RESULTS: Low density lipoprotein receptor(-/-)/apolipoprotein B(100/100) mice were fed a Western-type diet with or without Pio (20 mg/kg per day) for 6 months. Pio attenuated lipid deposition and calcification in the aortic valve, but not aorta. In the aortic valve, Pio reduced levels of active caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Valve function (echocardiography) was significantly improved by Pio. To determine whether changes in gene expression are associated with differential effects of Pio on aortic valves versus aorta, Reversa mice were fed Western diet with or without Pio for 2 months. Several procalcific genes were increased by Western diet, and the increase was attenuated by Pio, in aortic valve, but not aorta. CONCLUSIONS: Pio attenuates lipid deposition, calcification, and apoptosis in aortic valves of hypercholesterolemic mice, improves aortic valve function, and exhibits preferential effects on aortic valves versus aorta. We suggest that Pio protects against calcific aortic valve stenosis, and Pio or other peroxisome proliferator-activated receptor-γ ligands may be useful for early intervention to prevent or slow stenosis of aortic valves.


Assuntos
Estenose da Valva Aórtica/prevenção & controle , Valva Aórtica/efeitos dos fármacos , Calcinose/prevenção & controle , Hipercolesterolemia/tratamento farmacológico , Tiazolidinedionas/farmacologia , Adiponectina/sangue , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/fisiopatologia , Apolipoproteína B-100/deficiência , Apolipoproteína B-100/genética , Apoptose/efeitos dos fármacos , Biomarcadores/sangue , Glicemia/metabolismo , Calcinose/diagnóstico , Calcinose/genética , Calcinose/metabolismo , Calcinose/fisiopatologia , Caspase 3/metabolismo , Colesterol/sangue , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Regulação da Expressão Gênica , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Osteogênese/efeitos dos fármacos , Osteogênese/genética , PPAR gama/agonistas , PPAR gama/metabolismo , Pioglitazona , Receptores de LDL/deficiência , Receptores de LDL/genética , Proteína Amiloide A Sérica/metabolismo , Fatores de Tempo , Ultrassonografia
17.
Hypertension ; 61(3): 716-22, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23266541

RESUMO

Although elevated renin-angiotensin system activity and angiotensinergic signaling within the brain are required for hypertension, polydipsia, and increased metabolic rate induced by deoxycorticosterone acetate (DOCA)-salt, the contribution of specific receptor subtypes and brain nuclei mediating these responses remains poorly defined. We hypothesized that angiotensin type 1a receptors (AT(1a)R) within the subfornical organ (SFO) mediate these responses. Transgenic mice carrying a conditional allele of the endogenous AT(1a)R (AT(1a)R(flox)) were administered an adenovirus encoding Cre-recombinase and enhanced green fluorescent protein (eGFP) or adenovirus encoding eGFP alone into the lateral cerebral ventricle. Adenovirus encoding Cre-recombinase reduced AT(1a)R mRNA and induced recombination in AT(1a)R(flox) genomic DNA specifically in the SFO, without significant effect in the paraventricular or arcuate nuclei, and also induced SFO-specific recombination in ROSA(TdTomato) reporter mice. The effect of SFO-targeted ablation of endogenous AT(1a)R was evaluated in AT(1a)R(flox) mice at 3 time points: (1) baseline, (2) 1 week after virus injection but before DOCA-salt, and (3) after 3 weeks of DOCA-salt. DOCA-salt-treated mice with deletion of AT(1a)R in SFO exhibited a blunted increase in arterial pressure. Increased sympathetic cardiac modulation and urine copeptin, a marker of vasopressin release, were both significantly reduced in DOCA-salt mice when AT(1a)R was deleted in the SFO. Additionally, deletion of AT(1a)R in the SFO significantly attenuated the polydipsia, polyuria, and sodium intake in response to DOCA-salt. Together, these data highlight the contribution of AT(1a)R in the SFO to arterial pressure regulation potentially through changes on sympathetic cardiac modulation, vasopressin release, and hydromineral balance in the DOCA-salt model of hypertension.


Assuntos
Desoxicorticosterona/efeitos adversos , Hipertensão/induzido quimicamente , Mineralocorticoides/efeitos adversos , Receptor Tipo 1 de Angiotensina/fisiologia , Órgão Subfornical/efeitos dos fármacos , Órgão Subfornical/fisiopatologia , Animais , Pressão Arterial/efeitos dos fármacos , Biomarcadores/urina , Glicopeptídeos/urina , Coração/efeitos dos fármacos , Coração/inervação , Masculino , Camundongos , Camundongos Transgênicos , Polidipsia/induzido quimicamente , Poliúria/induzido quimicamente , Receptor Tipo 1 de Angiotensina/genética , Recombinação Genética , Sódio/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos
18.
Hypertension ; 59(6): 1212-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22547438

RESUMO

A single-nucleotide polymorphism (C/A) located within an E-box at the -20 position of the human angiotensinogen (AGT) promoter may regulate transcriptional activation through differential recruitment of the transcription factors upstream stimulatory factor (USF) 1 and 2. To study the contribution of USF1 on AGT gene expression, mice carrying a (-20C) human AGT (hAGT) transgene were bred with mice harboring a USF1 gene trap allele designed to knock down USF1 expression. USF1 mRNA was reduced relative to controls in liver (9 ± 1%), perigenital adipose (16 ± 3%), kidney (17 ± 1%), and brain (34 ± 2%) in double-transgenic mice. This decrease was confirmed by electrophoretic mobility shift assay. Chromatin immunoprecipitation analyses revealed a decrease in USF1, with retention of USF2 binding at the hAGT promoter in the liver of male mice. hAGT expression was reduced in the liver and other tissues of female but not male mice. The decrease in endogenous AGT expression was insufficient to alter systolic blood pressure at baseline but caused reduced systolic blood pressure in female USF1 gene trap mice fed a high-fat diet. Treatment of USF1 knockdown males with intravenous adenoviral short hairpin RNA targeting USF2 resulted in reduced expression of USF1, USF2, and hAGT protein. Our data from chromatin immunoprecipitation assays suggests that this decrease in hAGT is attributed to decreased USF2 binding to the hAGT promoter. In conclusion, both USF1 and USF2 are essential for AGT transcriptional regulation, and distinct sex-specific and tissue-specific mechanisms are involved in the activities of these transcription factors in vivo.


Assuntos
Angiotensinogênio/metabolismo , Técnicas de Silenciamento de Genes/métodos , Fatores Estimuladores Upstream/metabolismo , Angiotensinogênio/genética , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Western Blotting , Imunoprecipitação da Cromatina , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Regulação da Expressão Gênica , Humanos , Hipertensão/etiologia , Hipertensão/genética , Hipertensão/fisiopatologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Fatores Sexuais , Fatores Estimuladores Upstream/genética
19.
Circ Res ; 108(7): 808-12, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21311043

RESUMO

RATIONALE: The hypothalamic arcuate nucleus (ARC) is considered a major site for leptin signaling that regulates several physiological processes. OBJECTIVE: To test the hypothesis that leptin receptor in the ARC is required to mediate leptin-induced sympathetic activation. METHODS AND RESULTS: First, we used the ROSA Cre-reporter mice to establish the feasibility of driving Cre expression in the ARC in a controlled manner with bilateral microinjection of adenovirus-expressing Cre-recombinase (Ad-Cre). Ad-Cre microinjection into the ARC of ObR(flox/flox) mice robustly reduced ObR expression and leptin-induced Stat3 activation in the ARC but not in the adjacent nuclei, confirming the efficacy and selectivity of the ARC deletion of ObR. Critically, deletion of ObR in the ARC attenuated brown adipose tissue and renal sympathetic nerve responses to leptin. We also examined whether ObR in the ARC is required for the preserved leptin-induced increase in renal sympathetic activity in dietary obesity. We found that deletion of ARC ObR abrogated leptin-induced increases in renal sympathetic discharge and resolved arterial pressure elevation in diet-induced obese ObR(flox/flox) mice. CONCLUSIONS: These data demonstrate a critical role for ObR in the ARC in mediating the sympathetic nerve responses to leptin and in the adverse sympathoexcitatory effects of leptin in obesity.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Deleção de Genes , Leptina/farmacologia , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Adenoviridae/genética , Animais , Modelos Animais de Doenças , Proteínas de Fluorescência Verde , Homozigoto , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia
20.
Proc Natl Acad Sci U S A ; 108(7): 2921-6, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21285372

RESUMO

Gene transfer could provide a novel therapeutic approach for cystic fibrosis (CF), and adeno-associated virus (AAV) is a promising vector. However, the packaging capacity of AAV limits inclusion of the full-length cystic fibrosis transmembrane conductance regulator (CFTR) cDNA together with other regulatory and structural elements. To overcome AAV size constraints, we recently developed a shortened CFTR missing the N-terminal portion of the R domain (residues 708-759, CFTRΔR) and found that it retained regulated anion channel activity in vitro. To test the hypothesis that CFTRΔR could correct in vivo defects, we generated CFTR(-/-) mice bearing a transgene with a fatty acid binding protein promoter driving expression of human CFTRΔR in the intestine (CFTR(-/-);TgΔR). We found that intestinal crypts of CFTR(-/-);TgΔR mice expressed CFTRΔR and the intestine appeared histologically similar to that of WT mice. Moreover, like full-length CFTR transgene, the CFTRΔR transgene produced CFTR Cl(-) currents and rescued the CFTR(-/-) intestinal phenotype. These results indicate that the N-terminal part of the CFTR R domain is dispensable for in vivo intestinal physiology. Thus, CFTRΔR may have utility for AAV-mediated gene transfer in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fibrose Cística/terapia , Terapia Genética/métodos , Estrutura Terciária de Proteína/genética , Animais , Dependovirus , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Intestinos/anatomia & histologia , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA