Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3483, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664416

RESUMO

Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.


Assuntos
Proteína p300 Associada a E1A , Redes Reguladoras de Genes , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/antagonistas & inibidores , Linhagem Celular Tumoral , Redes Reguladoras de Genes/efeitos dos fármacos , Animais , Domínios Proteicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Antineoplásicos/farmacologia
2.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461690

RESUMO

Oncofetal transcription factor SALL4 is essential for cancer cell survival. 1-5 Recently, several groups reported that immunomodulatory imide drugs (IMiDs) could degrade SALL4 in a proteasome-dependent manner. 6,7 Intriguingly, we observed that IMiDs had no effect on SALL4-positive cancer cells. Further studies demonstrated that IMiDs could only degrade SALL4A, one of the SALL4 isoforms. This finding raises the possibility that SALL4B, the isoform not affected by IMiDs, may be essential for SALL4-mediated cancer cell survival. SALL4B knockdown led to an increase in apoptosis and inhibition of cancer cell growth. SALL4B gain-of-function alone led to liver tumor formation in mice. Our observation that protein degraders can possess isoform-specific effects exemplifies the importance of delineating drug action and oncogenesis at the isoform level to develop more effective cancer therapeutics.

3.
Cancer Discov ; 12(12): 2880-2905, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36305736

RESUMO

Diffuse midline gliomas are uniformly fatal pediatric central nervous system cancers that are refractory to standard-of-care therapeutic modalities. The primary genetic drivers are a set of recurrent amino acid substitutions in genes encoding histone H3 (H3K27M), which are currently undruggable. These H3K27M oncohistones perturb normal chromatin architecture, resulting in an aberrant epigenetic landscape. To interrogate for epigenetic dependencies, we performed a CRISPR screen and show that patient-derived H3K27M-glioma neurospheres are dependent on core components of the mammalian BAF (SWI/SNF) chromatin remodeling complex. The BAF complex maintains glioma stem cells in a cycling, oligodendrocyte precursor cell-like state, in which genetic perturbation of the BAF catalytic subunit SMARCA4 (BRG1), as well as pharmacologic suppression, opposes proliferation, promotes progression of differentiation along the astrocytic lineage, and improves overall survival of patient-derived xenograft models. In summary, we demonstrate that therapeutic inhibition of the BAF complex has translational potential for children with H3K27M gliomas. SIGNIFICANCE: Epigenetic dysregulation is at the core of H3K27M-glioma tumorigenesis. Here, we identify the BRG1-BAF complex as a critical regulator of enhancer and transcription factor landscapes, which maintain H3K27M glioma in their progenitor state, precluding glial differentiation, and establish pharmacologic targeting of the BAF complex as a novel treatment strategy for pediatric H3K27M glioma. See related commentary by Beytagh and Weiss, p. 2730. See related article by Mo et al., p. 2906.


Assuntos
Epigenoma , Glioma , Animais , Humanos , Mutação , Glioma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células-Tronco Neoplásicas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , DNA Helicases/genética , Proteínas Nucleares/genética
4.
Cancer Discov ; 12(3): 730-751, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34772733

RESUMO

Gene expression is regulated by promoters and enhancers marked by histone H3 lysine 27 acetylation (H3K27ac), which is established by the paralogous histone acetyltransferases (HAT) EP300 and CBP. These enzymes display overlapping regulatory roles in untransformed cells, but less characterized roles in cancer cells. We demonstrate that the majority of high-risk pediatric neuroblastoma (NB) depends on EP300, whereas CBP has a limited role. EP300 controls enhancer acetylation by interacting with TFAP2ß, a transcription factor member of the lineage-defining transcriptional core regulatory circuitry (CRC) in NB. To disrupt EP300, we developed a proteolysis-targeting chimera (PROTAC) compound termed "JQAD1" that selectively targets EP300 for degradation. JQAD1 treatment causes loss of H3K27ac at CRC enhancers and rapid NB apoptosis, with limited toxicity to untransformed cells where CBP may compensate. Furthermore, JQAD1 activity is critically determined by cereblon (CRBN) expression across NB cells. SIGNIFICANCE: EP300, but not CBP, controls oncogenic CRC-driven transcription in high-risk NB by binding TFAP2ß. We developed JQAD1, a CRBN-dependent PROTAC degrader with preferential activity against EP300 and demonstrated its activity in NB. JQAD1 has limited toxicity to untransformed cells and is effective in vivo in a CRBN-dependent manner. This article is highlighted in the In This Issue feature, p. 587.


Assuntos
Neuroblastoma , Sequências Reguladoras de Ácido Nucleico , Acetilação , Criança , Proteína p300 Associada a E1A/genética , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Oncogenes
5.
J Med Chem ; 64(9): 5787-5801, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33872011

RESUMO

The use of epigenetic bromodomain inhibitors as anticancer therapeutics has transitioned from targeting bromodomain extraterminal domain (BET) proteins into targeting non-BET bromodomains. The two most relevant non-BET bromodomain oncology targets are cyclic AMP response element-binding protein (CBP) and E1A binding protein P300 (EP300). To explore the growing CBP/EP300 interest, we developed a highly efficient two-step synthetic route for dimethylisoxazole-attached imidazo[1,2-a]pyridine scaffold-containing inhibitors. Our efficient two-step reactions enabled high-throughput synthesis of compounds designed by molecular modeling, which together with structure-activity relationship (SAR) studies facilitated an overarching understanding of selective targeting of CBP/EP300 over non-BET bromodomains. This led to the identification of a new potent and selective CBP/EP300 bromodomain inhibitor, UMB298 (compound 23, CBP IC50 72 nM and bromodomain 4, BRD4 IC50 5193 nM). The SAR we established is in good agreement with literature-reported CBP inhibitors, such as CBP30, and demonstrates the advantage of utilizing our two-step approach for inhibitor development of other bromodomains.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína p300 Associada a E1A/antagonistas & inibidores , Isoxazóis/química , Piridinas/química , Sítios de Ligação , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína p300 Associada a E1A/metabolismo , Humanos , Simulação de Acoplamento Molecular , Piridinas/metabolismo , Piridinas/farmacologia , Relação Estrutura-Atividade , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
6.
Mol Cell ; 78(6): 1086-1095, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32407673

RESUMO

Transcription is epigenetically regulated by the orchestrated function of chromatin-binding proteins that tightly control the expression of master transcription factors, effectors, and supportive housekeeping genes required for establishing and propagating the normal and malignant cell state. Rapid advances in chemical biology and functional genomics have facilitated exploration of targeting epigenetic proteins, yielding effective strategies to target transcription while reducing toxicities to untransformed cells. Here, we review recent developments in conventional active site and allosteric inhibitors, peptidomimetics, and novel proteolysis-targeted chimera (PROTAC) technology that have deepened our understanding of transcriptional processes and led to promising preclinical compounds for therapeutic translation, particularly in cancer.


Assuntos
Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Neoplasias/genética , Animais , Antineoplásicos/farmacologia , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética/fisiologia , Epigenômica/métodos , Humanos , Neoplasias/terapia , Proteólise/efeitos dos fármacos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA