Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Glycobiology ; 34(6)2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38590172

RESUMO

Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Caliciviridae , Fucose , Glicoproteínas , Antígenos de Histocompatibilidade , Jejuno , Organoides , Glicômica , Proteômica , Genótipo , Fenótipo , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Fucose/metabolismo , Glicosilação , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Humanos , Glicopeptídeos/química , Infecções por Caliciviridae/sangue , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/metabolismo , Organoides/metabolismo , Jejuno/metabolismo , Jejuno/virologia
2.
Nucleic Acids Res ; 52(5): 2648-2671, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38180812

RESUMO

Telomerase-negative tumors maintain telomere length by alternative lengthening of telomeres (ALT), but the underlying mechanism behind ALT remains poorly understood. A proportion of aggressive neuroblastoma (NB), particularly relapsed tumors, are positive for ALT (ALT+), suggesting that a better dissection of the ALT mechanism could lead to novel therapeutic opportunities. TERRA, a long non-coding RNA (lncRNA) derived from telomere ends, localizes to telomeres in a R-loop-dependent manner and plays a crucial role in telomere maintenance. Here we present evidence that RNA modification at the N6 position of internal adenosine (m6A) in TERRA by the methyltransferase METTL3 is essential for telomere maintenance in ALT+ cells, and the loss of TERRA m6A/METTL3 results in telomere damage. We observed that m6A modification is abundant in R-loop enriched TERRA, and the m6A-mediated recruitment of hnRNPA2B1 to TERRA is critical for R-loop formation. Our findings suggest that m6A drives telomere targeting of TERRA via R-loops, and this m6A-mediated R-loop formation could be a widespread mechanism employed by other chromatin-interacting lncRNAs. Furthermore, treatment of ALT+ NB cells with a METTL3 inhibitor resulted in compromised telomere targeting of TERRA and accumulation of DNA damage at telomeres, indicating that METTL3 inhibition may represent a therapeutic approach for ALT+ NB.


Assuntos
Metiltransferases , Neuroblastoma , RNA Longo não Codificante , Humanos , Adenina/análogos & derivados , Metiltransferases/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estruturas R-Loop , RNA Longo não Codificante/metabolismo , Telômero/genética , Homeostase do Telômero
3.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36697252

RESUMO

Resident tissue macrophages are organ-specialized phagocytes responsible for the maintenance and protection of tissue homeostasis. It is well established that tissue diversity is reflected by the heterogeneity of resident tissue macrophage origin and phenotype. However, much less is known about tissue-specific phagocytic and proteolytic macrophage functions. Here, using a quantitative proteomics approach, we identify cathepsins as key determinants of phagosome maturation in primary peritoneum-, lung-, and brain-resident macrophages. The data further uncover cathepsin K (CtsK) as a molecular marker for lung phagosomes required for intracellular protein and collagen degradation. Pharmacological blockade of CtsK activity diminished phagosomal proteolysis and collagenolysis in lung-resident macrophages. Furthermore, profibrotic TGF-ß negatively regulated CtsK-mediated phagosomal collagen degradation independently from classical endocytic-proteolytic pathways. In humans, phagosomal CtsK activity was reduced in COPD lung macrophages and non-COPD lung macrophages exposed to cigarette smoke extract. Taken together, this study provides a comprehensive map of how peritoneal, lung, and brain tissue environment shapes phagosomal composition, revealing CtsK as a key molecular determinant of lung phagosomes contributing to phagocytic collagen clearance in lungs.


Assuntos
Catepsina K , Macrófagos , Fagossomos , Humanos , Catepsina K/metabolismo , Colágeno/metabolismo , Pulmão , Macrófagos/metabolismo , Fagossomos/metabolismo
4.
Amyloid ; 30(1): 96-108, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36209425

RESUMO

BACKGROUND: Cardiac amyloidosis is a severe condition leading to restrictive cardiomyopathy and heart failure. Mass spectrometry-based methods for cardiac amyloid subtyping have become important diagnostic tools but are currently used only in a few reference laboratories. Such methods include laser-capture microdissection to ensure the specific analysis of amyloid deposits. Here we introduce a direct proteomics-based method for subtyping of cardiac amyloidosis. METHODS: Endomyocardial biopsies were retrospectively analysed from fresh frozen material of 78 patients with cardiac amyloidosis and from 12 biopsies of unused donor heart explants. Cryostat sections were digested with trypsin and analysed with liquid chromatography - mass spectrometry, and data were evaluated by proteomic software. RESULTS: With a diagnostic threshold set to 70% for each of the four most common amyloid proteins affecting the heart (LC κ, LC λ, TTR and SAA), 65 of the cases (87%) could be diagnosed, and of these, 61 cases (94%) were in concordance with the original diagnoses. The specimens were also analysed for the summed intensities of the amyloid signature proteins (ApoE, ApoA-IV and SAP). The intensities were significantly higher (p < 0.001) for all assigned cases compared with controls. CONCLUSION: Cardiac amyloidosis can be successfully subtyped without the prior enrichment of amyloid deposits with laser microdissection.


Assuntos
Amiloidose , Transplante de Coração , Humanos , Placa Amiloide/patologia , Estudos Retrospectivos , Proteômica/métodos , Doadores de Tecidos , Amiloidose/metabolismo , Amiloide/metabolismo , Espectrometria de Massas , Proteínas Amiloidogênicas , Biópsia
5.
Proteomics ; 23(5): e2200366, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36479858

RESUMO

Crohn's disease (CD) is a chronic condition characterized by recurrent flares of inflammation in the gastrointestinal tract. Disease etiology is poorly understood and is characterized by dysregulated immune activation that progressively destroys intestinal tissue. Key cellular compartments in disease pathogenesis are the intestinal epithelial layer and its underlying lamina propria. While the epithelium contains predominantly epithelial cells, the lamina propria is enriched in immune cells. Deciphering proteome changes in different cell populations is important to understand CD pathogenesis. Here, using isobaric labeling-based quantitative proteomics, we perform an exploratory study to analyze in-depth proteome changes in epithelial cells, immune cells and stromal cells in CD patients compared to controls using cells purified by FACS. Our study revealed increased proteins associated with neutrophil degranulation and mitochondrial metabolism in immune cells of CD intestinal mucosa. We also found upregulation of proteins involved in glycosylation and secretory pathways in epithelial cells of CD patients, while proteins involved in mitochondrial metabolism were reduced. The distinct alterations in protein levels in immune- versus epithelial cells underscores the utility of proteome analysis of defined cell types. Moreover, our workflow allowing concomitant assessment of cell-type specific changes on an individual basis enables deeper insight into disease pathogenesis.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/metabolismo , Proteoma/metabolismo , Colo/metabolismo , Proteômica , Mucosa Intestinal/metabolismo , Células Epiteliais/metabolismo
6.
JCI Insight ; 7(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35993367

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic disease of unmet medical need. It is characterized by formation of scar tissue leading to a progressive and irreversible decline in lung function. IPF is associated with repeated injury, which may alter the composition of the extracellular matrix (ECM). Here, we demonstrate that IPF patient-derived pulmonary ECM drives profibrotic response in normal human lung fibroblasts (NHLF) in a 3D spheroid assay. Next, we reveal distinct alterations in composition of the diseased ECM, identifying potentially novel associations with IPF. Growth differentiation factor 15 (GDF15) was identified among the most significantly upregulated proteins in the IPF lung-derived ECM. In vivo, GDF15 neutralization in a bleomycin-induced lung fibrosis model led to significantly less fibrosis. In vitro, recombinant GDF15 (rGDF15) stimulated α smooth muscle actin (αSMA) expression in NHLF, and this was mediated by the activin receptor-like kinase 5 (ALK5) receptor. Furthermore, in the presence of rGDF15, the migration of NHLF in collagen gel was reduced. In addition, we observed a cell type-dependent effect of GDF15 on the expression of cell senescence markers. Our data suggest that GDF15 mediates lung fibrosis through fibroblast activation and differentiation, implicating a potential direct role of this matrix-associated cytokine in promoting aberrant cell responses in disease.


Assuntos
Matriz Extracelular , Fator 15 de Diferenciação de Crescimento , Fibrose Pulmonar Idiopática , Matriz Extracelular/metabolismo , Fibrose/genética , Fibrose/metabolismo , Fator 15 de Diferenciação de Crescimento/biossíntese , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Transdução de Sinais
7.
Eur J Endocrinol ; 187(1): 75-84, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35521766

RESUMO

Objective: Incretins are known to influence lipid metabolism in the intestine when administered as pharmacologic agents. The aggregate influence of endogenous incretins on chylomicron production and clearance is less clear, particularly in light of opposing effects of co-secreted hormones. Here, we tested the hypothesis that physiological levels of incretins may impact on production or clearances rates of chylomicrons and VLDL. Design and methods: A group of 22 overweight/obese men was studied to determine associations between plasma levels of glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) and glucose-dependent insulinotropic polypeptide (GIP) after a fat-rich meal and the production and clearance rates of apoB48- and apoB100-containing triglyceride-rich lipoproteins. Subjects were stratified by above- and below-median incretin response (area under the curve). Results: Stratification yielded subgroups that differed about two-fold in incretin response. There were neither differences in apoB48 production rates in chylomicrons or VLDL fractions nor in apoB100 or triglyceride kinetics in VLDL between men with above- vs below-median incretin responses. The men with above-median GLP-1 and GLP-2 responses exhibited higher postprandial plasma and chylomicron triglyceride levels, but this could not be related to altered kinetic parameters. No differences were found between incretin response subgroups and particle clearance rates. Conclusion: We found no evidence for a regulatory effect of endogenous incretins on contemporaneous chylomicron or VLDL metabolism following a standardised fat-rich meal. The actions of incretins at pharmacological doses may not be reflected at physiological levels of these hormones.


Assuntos
Incretinas , Período Pós-Prandial , Apolipoproteína B-48/metabolismo , Quilomícrons/metabolismo , Polipeptídeo Inibidor Gástrico , Peptídeo 1 Semelhante ao Glucagon , Humanos , Lipoproteínas/metabolismo , Masculino , Triglicerídeos
8.
Sci Rep ; 12(1): 7000, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487913

RESUMO

Molecular biomarkers of ionizing radiation (IR) exposure are a promising new tool in various disciplines: they can give necessary information for adaptive treatment planning in cancer radiotherapy, enable risk projection for radiation-induced survivorship diseases, or facilitate triage and intervention in radiation hazard events. However, radiation biomarker discovery has not yet resolved the most basic features of personalized medicine: age and sex. To overcome this critical bias in biomarker identification, we quantitated age and sex effects and assessed their relevance in the radiation response across the blood proteome. We used high-throughput mass spectrometry on blood plasma collected 24 h after 0.5 Gy total body irradiation (15 MV nominal photon energy) from male and female C57BL/6 N mice at juvenile (7-weeks-old) or adult (18-weeks-old) age. We also assessed sex and strain effects using juvenile male and female BALB/c nude mice. We showed that age and sex created significant effects in the proteomic response regarding both extent and functional quality of IR-induced responses. Furthermore, we found that age and sex effects appeared non-linear and were often end-point specific. Overall, age contributed more to differences in the proteomic response than sex, most notably in immune responses, oxidative stress, and apoptotic cell death. Interestingly, sex effects were pronounced for DNA damage and repair pathways and associated cellular outcome (pro-survival vs. pro-apoptotic). Only one protein (AHSP) was identified as a potential general biomarker candidate across age and sex, while GMNN, REG3B, and SNCA indicated some response similarity across age. This low yield advocated that unisex or uniage biomarker screening approaches are not feasible. In conclusion, age- and sex-specific screening approaches should be implemented as standard protocol to ensure robustness and diagnostic power of biomarker candidates. Bias-free molecular biomarkers are a necessary progression towards personalized medicine and integral for advanced adaptive cancer radiotherapy and risk assessment.


Assuntos
Neoplasias , Lesões por Radiação , Animais , Biomarcadores , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteoma/análise , Proteômica/métodos , Radiação Ionizante , Medição de Risco
9.
Acta Obstet Gynecol Scand ; 99(7): 917-924, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31945183

RESUMO

INTRODUCTION: Human ovulation is a biologically complex process that involves several biochemical factors, promoting follicular rupture and release of a fertilizable oocyte. Proteins which are present in follicular fluid at high concentrations during ovulation are likely to be active participants in the biochemical pathways of ovulation. The aim of the study was to identify, by use of a modern proteomic technique, proteins of human follicular fluid which are differentially regulated during ovulation of the natural menstrual cycle. MATERIAL AND METHODS: This prospective experimental study over 3 years included women planned for laparoscopic sterilization. During surgery, retrieval of the dominant follicle was performed either at the preovulatory stage or during ovulation. Four women of preovulatory phase and four women of ovulatory phase met the predetermined criteria of hormone levels for respective phases, and samples of these were finally included out of the 15 women operated. Follicular fluid was aspirated from the excised follicle and subjected to mass spectrometry with the isobaric tags for relative and absolute quantification (iTRAQ) technology for isobaric tagging of peptides. This enables simultaneous identification and quantification of proteins. The protein profiles of the follicular fluid of the preovulatory phase and the ovulatory phase were analyzed, and proteins that were present were identified. RESULTS: A total of 502 proteins were identified, several of which previously have not been identified in human follicular fluid. Of the 115 proteins that were found in all samples, 20 proteins were at higher levels during ovulation. These were inflammatory-related proteins, coagulation factors, proteins in lipid metabolism, complement factors and antioxidants. Five proteins were present in lower levels during ovulation, with three being enzymes and the other two proteins of lipid metabolism and iron transport. CONCLUSIONS: Twenty-five follicular fluid proteins, with differential regulation during ovulation, were identified in human follicular fluid of the natural menstrual cycle. These proteins may have essential roles in the ovulatory cascade.


Assuntos
Líquido Folicular/química , Folículo Ovariano/metabolismo , Ovulação/metabolismo , Proteínas/metabolismo , Proteômica , Adulto , Feminino , Fase Folicular/metabolismo , Humanos , Espectrometria de Massas , Estudos Prospectivos , Suécia
10.
Int J Mol Sci ; 20(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813247

RESUMO

A recombinant subunit vaccine (Shingrix®) was recently licensed for use against herpes zoster. This vaccine is based on glycoprotein E (gE) of varicella zoster virus (VZV), the most abundantly expressed protein of VZV, harboring sites for N- and O-linked glycosylation. The subunit vaccine elicits stronger virus-specific CD4+ T cell response as well as antibody B cell response to gE, compared to the currently used live attenuated vaccine (Zostavax®). This situation is at variance with the current notion since a live vaccine, causing an active virus infection, should be far more efficient than a subunit vaccine based on only one single viral glycoprotein. We previously found gE to be heavily glycosylated, not least by numerous clustered O-linked glycans, when it was produced in human fibroblasts. However, in contrast to Zostavax®, which is produced in fibroblasts, the recombinant gE of Shingrix® is expressed in Chinese hamster ovary (CHO) cells. Hence, the glycan occupancy and glycan structures of gE may differ considerably between the two vaccine types. Here, we aimed at (i) defining the glycan structures and positions of recombinant gE and (ii) identifying possible features of the recombinant gE O-glycosylation pattern contributing to the vaccine efficacy of Shingrix®. Firstly, recombinant gE produced in CHO cells ("Shingrix situation") is more scarcely decorated by O-linked glycans than gE from human fibroblasts ("Zostavax situation"), with respect to glycan site occupancy. Secondly, screening of immunodominant B cell epitopes of gE, using a synthetic peptide library against serum samples from VZV-seropositive individuals, revealed that the O-linked glycan signature promoted binding of IgG antibodies via a decreased number of interfering O-linked glycans, but also via specific O-linked glycans enhancing antibody binding. These findings may, in part, explain the higher protective efficacy of Shingrix®, and can also be of relevance for development of subunit vaccines to other enveloped viruses.


Assuntos
Epitopos de Linfócito B/imunologia , Peptídeos/química , Polissacarídeos/química , Proteínas Recombinantes/química , Proteínas do Envelope Viral/química , Acetilgalactosamina/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Humanos , Soro/metabolismo
11.
Sci Rep ; 8(1): 15731, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356069

RESUMO

The melanocortin-1 receptor (MC1R) in podocytes has been suggested as the mediator of the ACTH renoprotective effect in patients with nephrotic syndrome with the mechanism of action beeing stabilization of the podocyte actin cytoskeleton. To understand how melanocortin receptors are regulated in nephrotic syndrome and how they are involved in restoration of filtration barrier function, melanocortin receptor expression was evaluated in patients and a rat model of nephrotic syndrome in combination with cell culture analysis. Phosphoproteomics was applied and identified MC1R pathways confirmed using biochemical analysis. We found that glomerular MC1R expression was increased in nephrotic syndrome, both in humans and in a rat model. A MC1R agonist protected podocytes from protamine sulfate induced stress fiber loss with the top ranked phoshoproteomic MC1R activated pathway beeing actin cytoskeleton signaling. Actin stabilization through the MC1R consisted of ERK1/2 dependent phosphorylation and inactivation of EGFR signaling with stabilization of synaptopodin and stressfibers in podocytes. These results further explain how patients with nephrotic syndrome show responsiveness to MC1R receptor activation by decreasing EGFR signaling and as a consequence restore filtration barrier function by stabilizing the podocyte actin cytoskeleton.


Assuntos
Citoesqueleto de Actina/metabolismo , Síndrome Nefrótica/metabolismo , Podócitos/ultraestrutura , Receptor Tipo 1 de Melanocortina/análise , Animais , Células Cultivadas , Receptores ErbB/metabolismo , Barreira de Filtração Glomerular , Humanos , Fosforilação , Proteômica/métodos , Ratos , Receptor Tipo 1 de Melanocortina/agonistas , Receptor Tipo 1 de Melanocortina/metabolismo
12.
Toxins (Basel) ; 10(8)2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30126099

RESUMO

Orellanine is a nephrotoxin found in mushrooms of the Cortinarius family. Accidental intake of this substance may cause renal failure. Orellanine is specific for proximal tubular cells and could, therefore, potentially be used as treatment for metastatic renal cancer, which originates from these cells. However, more information is needed about the distribution and elimination of orellanine from the body to understand its potential use for therapy. In this study, 5 mg/kg orellanine (unlabeled and ³H-labeled) was injected intravenously in rats (Wistar and Sprague Dawley). Distribution was measured (Wistar rats, n = 10, n = 12) using radioluminography and the highest amount of orellanine was found in the kidney cortex and bladder at all time-points investigated. The pharmacokinetic properties of orellanine was investigated using LC-MS/MS and ß-scintillation to measure the amount of orellanine in plasma. Three groups of rats were investigated: control rats with intact kidneys (n = 10) and two groups with bilateral renal artery ligation (n = 7) where animals in one of these groups were treated with peritoneal dialysis (n = 8). Using LC-MS/MS, the half-life of orellanine was found to be 109 ± 6 min in the controls. In the groups with ligated renal arteries, orellanine had a half-life of 756 ± 98 min without and 238 ± 28 min with dialysis. Thus, orellanine was almost exclusively eliminated by glomerular filtration as well as by peritoneal dialysis.


Assuntos
2,2'-Dipiridil/análogos & derivados , Micotoxinas/farmacocinética , 2,2'-Dipiridil/farmacocinética , Animais , Rim/fisiologia , Masculino , Micotoxinas/sangue , Ratos Sprague-Dawley , Ratos Wistar , Diálise Renal
13.
Angew Chem Int Ed Engl ; 57(30): 9320-9324, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29742324

RESUMO

Distinct structural changes of the α2,3/α2,6-sialic acid glycosidic linkages on glycoproteins are of importance in cancer biology, inflammatory diseases, and virus tropism. Current glycoproteomic methodologies are, however, not amenable toward high-throughput characterization of sialic acid isomers. To enable such assignments, a mass spectrometry method utilizing synthetic model glycopeptides for the analysis of oxonium ion intensity ratios was developed. This method was successfully applied in large-scale glycoproteomics, thus allowing the site-specific structural characterization of sialic acid isomers.


Assuntos
Proteômica , Ácidos Siálicos/química , Configuração de Carboidratos , Cromatografia Líquida , Estereoisomerismo , Espectrometria de Massas em Tandem
14.
Oncotarget ; 8(53): 91085-91098, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29207627

RESUMO

Renal cell carcinoma (RCC), arising from the proximal tubule in the kidney, accounts for approximately 85% of kidney cancers and causes over 140,000 annual deaths worldwide. In the last decade, several new therapies have been identified for treatment of metastatic RCC. Although these therapies increase survival time compared to standard care, none of them has curative properties. The nephrotoxin orellanine specifically targets proximal tubular epithelial cells, leaving other organs unaffected. We therefore hypothesized that the selective toxicity of orellanine extends to clear cell RCC (ccRCC) cells since they emanate from proximal tubular cells. Orellanine would thus target both primary and metastatic ccRCC in vitro and in vivo. We found that orellanine induces dose-dependent cell death in proximal tubular cells and in all ccRCC cells tested, both primary and cell lines, with no toxicity detected in control cells. The toxic action of orellanine involve decreased protein synthesis, disrupted cell metabolism and induction of apoptosis. In nude rats carrying human ccRCC xenografts, brief orellanine treatment eliminated more than 90% of viable tumor mass compared to control rats. This identifies orellanine as a potential treatment concept for ccRCC patients on dialysis, due to its unique selective toxicity towards ccRCC.

15.
Microbiology (Reading) ; 163(7): 1093-1104, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28699879

RESUMO

Non-typeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that plays a major role in a number of respiratory tract infections, including otitis media, cystic fibrosis and chronic obstructive pulmonary disease. Biofilm formation has been implicated in both NTHi colonization and disease, and is responsible for the increased tolerance of this pathogen towards antibiotic treatment. Targeting metabolic pathways that are important in NTHi biofilm formation represents a potential strategy to combat this antibiotic recalcitrance. A previous investigation demonstrated increased expression of a putative d-methionine uptake protein following exposure of NTHi biofilms to the ubiquitous signalling molecule, nitric oxide. We therefore hypothesized that treatment with exogenous d-methionine would impact on NTHi biofilm formation and increase antibiotic sensitivity. Treatment of NTHi during the process of biofilm formation resulted in a reduction in biofilm viability, increased biomass, changes in the overall biofilm architecture and the adoption of an amorphous cellular morphology. Quantitative proteomic analyses identified 124 proteins that were differentially expressed following d-methionine treatment, of which 51 (41 %) were involved in metabolic and transport processes. Nine proteins involved in peptidoglycan synthesis and cell division showed significantly increased expression. Furthermore, d-methionine treatment augmented the efficacy of azithromycin treatment and highlighted the potential of d-methionine as an adjunctive therapeutic approach for NTHi biofilm-associated infections.


Assuntos
Biofilmes , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/crescimento & desenvolvimento , Haemophilus influenzae/metabolismo , Metionina/metabolismo , Peptidoglicano/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/genética , Humanos
16.
J Am Soc Nephrol ; 28(10): 2961-2972, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28646076

RESUMO

IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type-specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell-positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell-positive standard genes. Additionally, patient clinical parameters (serum creatinine values and eGFRs) significantly correlated with Z scores derived from the expression profile of mesangial cell-positive standard genes. Among patients grouped according to Oxford MEST score, patients with segmental glomerulosclerosis had a significantly higher mesangial cell-positive standard gene Z score than patients without segmental glomerulosclerosis. By investigating mesangial cell proteomics and glomerular transcriptomics, we identified 22 common pathways induced in mesangial cells by gd-IgA, most of which mediate inflammation. The genes, proteins, and corresponding pathways identified provide novel insights into the pathophysiologic mechanisms leading to IgAN.


Assuntos
Glomerulonefrite por IGA/metabolismo , Células Mesangiais/metabolismo , Adulto , Estudos de Casos e Controles , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Glomerulonefrite por IGA/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma , Transcriptoma
17.
Front Microbiol ; 7: 1757, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27891114

RESUMO

Helicobacter pylori, a gastroenteric pathogen believed to have co-evolved with humans over 100,000 years, shows significant genetic variability. This motivates the study of different H. pylori strains and the diseases they cause in order to identify determinants for disease evolution. In this study, we used proteomics tools to compare two H. pylori strains. Nic25_A was isolated in Nicaragua from a patient with intestinal metaplasia, and P12 was isolated in Europe from a patient with duodenal ulcers. Differences in the abundance of surface proteins between the two strains were determined with two mass spectrometry-based methods, label-free quantification (MaxQuant) or the use of tandem mass tags (TMT). Each approach used a lipid-based protein immobilization (LPITM) technique to enrich peptides of surface proteins. Using the MaxQuant software, we found 52 proteins that differed significantly in abundance between the two strains (up- or downregulated by a factor of 1.5); with TMT, we found 18 proteins that differed in abundance between the strains. Strain P12 had a higher abundance of proteins encoded by the cag pathogenicity island, while levels of the acid response regulator ArsR and its regulatory targets (KatA, AmiE, and proteins involved in urease production) were higher in strain Nic25_A. Our results show that differences in protein abundance between H. pylori strains can be detected with proteomic approaches; this could have important implications for the study of disease progression.

18.
Sci Rep ; 6: 34537, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694851

RESUMO

Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans.


Assuntos
Condroitina ABC Liase/química , Sulfatos de Condroitina/química , Heparitina Sulfato/química , Proteoglicanas/química , Animais , Linhagem Celular Tumoral , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Camundongos , Proteoglicanas/metabolismo
19.
Mol Cell Proteomics ; 14(12): 3118-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407992

RESUMO

The inter-α-trypsin inhibitor complex is a macromolecular arrangement of structurally related heavy chain proteins covalently cross-linked to the chondroitin sulfate (CS) chain of the proteoglycan bikunin. The inter-α-trypsin inhibitor complex is abundant in plasma and associated with inflammation, kidney diseases, cancer and diabetes. Bikunin is modified at Ser-10 by a single low-sulfated CS chain of 23-55 monosaccharides with 4-9 sulfate groups. The innermost four monosaccharides (GlcAß3Galß3Galß4Xylß-O-) compose the linkage region, believed to be uniform with a 4-O-sulfation to the outer Gal. The cross-linkage region of the bikunin CS chain is located in the nonsulfated nonreducing end, (GalNAcß4GlcAß3)(n), to which heavy chains (H1-H3) may be bound in GalNAc to Asp ester linkages. In this study we employed a glycoproteomics protocol to enrich and analyze light and heavy chain linkage and cross-linkage region CS glycopeptides derived from the IαI complex of human plasma, urine and cerebrospinal fluid samples. The samples were trypsinized, enriched by strong anion exchange chromatography, partially depolymerized with chondroitinase ABC and analyzed by LC-MS/MS using higher-energy collisional dissociation. The analyses demonstrated that the CS linkage region of bikunin is highly heterogeneous. In addition to sulfation of the Gal residue, Xyl phosphorylation was observed although exclusively in urinary samples. We also identified novel Neu5Ac and Fuc modifications of the linkage region as well as the presence of mono- and disialylated core 1 O-linked glycans on Thr-17. Heavy chains H1 and H2 were identified cross-linked to GalNAc residues one or two GlcA residues apart and H1 was found linked to either the terminal or subterminal GalNAc residues. The fragmentation behavior of CS glycopeptides under variable higher-energy collisional dissociation conditions displays an energy dependence that may be used to obtain complementary structural details. Finally, we show that the analysis of sodium adducts provides confirmatory information about the positions of glycan substituents.


Assuntos
alfa-Globulinas/isolamento & purificação , Sulfatos de Condroitina/química , Proteômica/métodos , alfa-Globulinas/líquido cefalorraquidiano , alfa-Globulinas/química , alfa-Globulinas/urina , Cromatografia Líquida/métodos , Galactose/química , Glicopeptídeos/química , Glicopeptídeos/isolamento & purificação , Humanos , Masculino , Espectrometria de Massas em Tandem/métodos
20.
Connect Tissue Res ; 56(4): 315-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803623

RESUMO

The molecular aspects of inflammation were investigated in equine articular cartilage explants using quantitative proteomics. Articular cartilage explants were stimulated with interleukin (IL)-1ß in vitro for 25 days, and proteins released into cell culture media were chemically labeled with isobaric mass tags and analyzed by liquid chromatography-tandem mass spectrometry. A total of 127 proteins were identified and quantified in media from explants. IL-1ß-stimulation resulted in an abundance of proteins related to inflammation, including matrix metalloproteinases, acute phase proteins, complement components and IL-6. Extracellular matrix (ECM) molecules were released at different time points, and fragmentation of aggrecan and cartilage oligomeric matrix protein was observed at days 3 and 6, similar to early-stage OA in vivo. Degradation products of the collagenous network were observed at days 18 and 22, similar to late-stage OA. This model displays a longitudinal quantification of released molecules from the ECM of articular cartilage. Identification of dynamic changes of extracellular matrix molecules in the secretome of equine explants stimulated with IL-1ß over time may be useful for identifying components released at different time points during the spontaneous OA process.


Assuntos
Cartilagem Articular/metabolismo , Matriz Extracelular/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Osteoartrite/metabolismo , Animais , Cartilagem Articular/patologia , Matriz Extracelular/patologia , Cavalos , Inflamação/metabolismo , Inflamação/patologia , Osteoartrite/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA