Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 55(12): 2211-2223, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945901

RESUMO

Clinical response to adoptive T cell therapies is associated with the transcriptional and epigenetic state of the cell product. Thus, discovery of regulators of T cell gene networks and their corresponding phenotypes has potential to improve T cell therapies. Here we developed pooled, epigenetic CRISPR screening approaches to systematically profile the effects of activating or repressing 120 transcriptional and epigenetic regulators on human CD8+ T cell state. We found that BATF3 overexpression promoted specific features of memory T cells and attenuated gene programs associated with cytotoxicity, regulatory T cell function, and exhaustion. Upon chronic antigen stimulation, BATF3 overexpression countered phenotypic and epigenetic signatures of T cell exhaustion. Moreover, BATF3 enhanced the potency of CAR T cells in both in vitro and in vivo tumor models and programmed a transcriptional profile that correlates with positive clinical response to adoptive T cell therapy. Finally, we performed CRISPR knockout screens that defined cofactors and downstream mediators of the BATF3 gene network.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Linfócitos T CD8-Positivos , Epigênese Genética
2.
bioRxiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205457

RESUMO

The clinical response to adoptive T cell therapies is strongly associated with transcriptional and epigenetic state. Thus, technologies to discover regulators of T cell gene networks and their corresponding phenotypes have great potential to improve the efficacy of T cell therapies. We developed pooled CRISPR screening approaches with compact epigenome editors to systematically profile the effects of activation and repression of 120 transcription factors and epigenetic modifiers on human CD8+ T cell state. These screens nominated known and novel regulators of T cell phenotypes with BATF3 emerging as a high confidence gene in both screens. We found that BATF3 overexpression promoted specific features of memory T cells such as increased IL7R expression and glycolytic capacity, while attenuating gene programs associated with cytotoxicity, regulatory T cell function, and T cell exhaustion. In the context of chronic antigen stimulation, BATF3 overexpression countered phenotypic and epigenetic signatures of T cell exhaustion. CAR T cells overexpressing BATF3 significantly outperformed control CAR T cells in both in vitro and in vivo tumor models. Moreover, we found that BATF3 programmed a transcriptional profile that correlated with positive clinical response to adoptive T cell therapy. Finally, we performed CRISPR knockout screens with and without BATF3 overexpression to define co-factors and downstream factors of BATF3, as well as other therapeutic targets. These screens pointed to a model where BATF3 interacts with JUNB and IRF4 to regulate gene expression and illuminated several other novel targets for further investigation.

3.
Nucleic Acids Res ; 48(20): 11380-11393, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33068438

RESUMO

Advancing the molecular knowledge surrounding fertility and inheritance has become critical given the halving of sperm counts in the last 40 years, and the rise in complex disease which cannot be explained by genetics alone. The connection between both these trends may lie in alterations to the sperm epigenome and occur through environmental exposures. Changes to the sperm epigenome are also associated with health risks across generations such as metabolic disorders and cancer. Thus, it is imperative to identify the epigenetic modifications that escape reprogramming during spermatogenesis and embryogenesis. Here, we aimed to identify the chromatin signature(s) involved in transgenerational phenotypes in our genetic mouse model of epigenetic inheritance that overexpresses the histone demethylase KDM1A in their germ cells. We used sperm-specific chromatin immunoprecipitation followed by in depth sequencing (ChIP-seq), and computational analysis to identify whether differential enrichment of histone H3 lysine 4 trimethylation (H3K4me3), and histone H3 lysine 27 trimethylation (H3K27me3) serve as mechanisms for transgenerational epigenetic inheritance through the paternal germline. Our analysis on the sperm of KDM1A transgenic males revealed specific changes in H3K4me3 enrichment that predominantly occurred independently from bivalent H3K4me3/H3K27me3 regions. Many regions with altered H3K4me3 enrichment in sperm were identified on the paternal allele of the pre-implantation embryo. These findings suggest that sperm H3K4me3 functions in the transmission of non-genetic phenotypes transgenerationally.


Assuntos
Cromatina/metabolismo , Epigênese Genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Animais , Reprogramação Celular , Sequenciamento de Cromatina por Imunoprecipitação , Embrião de Mamíferos/metabolismo , Ontologia Genética , Loci Gênicos , Histona Desmetilases/genética , Lisina/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Regiões Promotoras Genéticas , Espermatócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA