Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124852

RESUMO

A phospholipid bilayer is a typical structure that serves crucial functions in various cells and organelles. However, it is not unusual for it to take part in pathological processes. The cell membrane may be a binding target for amyloid-forming proteins, becoming a factor modulating the oligomerization process leading to amyloid deposition-a hallmark of amyloidogenic diseases-e.g., Alzheimer's disease. The information on the mechanisms governing the oligomerization influenced by the protein-membrane interactions is scarce. Therefore, our study aims to describe the interactions between DPPA, a cell membrane mimetic, and amyloidogenic protein human cystatin C. Circular dichroism spectroscopy and differential scanning calorimetry were used to monitor (i) the secondary structure of the human cystatin C and (ii) the phase transition temperature of the DPPA, during the protein-membrane interactions. NMR techniques were used to determine the protein fragments responsible for the interactions, and molecular dynamics simulations were applied to provide a molecular structure representing the interaction. The obtained data indicate that the protein interacts with DPPA, submerging itself into the bilayer via the AS region. Additionally, the interaction increases the content of α-helix within the protein's secondary structure and stabilizes the whole molecule against denaturation.


Assuntos
Membrana Celular , Cistatina C , Ligação Proteica , Cistatina C/química , Cistatina C/metabolismo , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Simulação de Dinâmica Molecular , Dicroísmo Circular , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Estrutura Secundária de Proteína , Varredura Diferencial de Calorimetria
2.
Transl Oncol ; 42: 101892, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359715

RESUMO

The PD-1/PD-L1 complex belongs to the group of inhibitory immune checkpoints and plays a critical role in immune regulation. The PD-1/PD-L1 axis is also responsible for immune evasion of cancer cells, and this complex is one of the main targets of immunotherapies used in oncology. Treatment using immune checkpoint inhibitors is mainly based on antibodies. This approach has great therapeutic potential; however, it also has major drawbacks and can induce immune-related adverse events. Thus, there is a strong need for alternative, non-antibody-based therapies using small molecules, peptides, or peptidomimetics. In the present study, we designed, synthesized, and evaluated a set of PD-1-targeting peptides based on the sequence and structure of PD-L1. The binding of these peptides to PD-1 was investigated using SPR and ELISA. We also assessed their ability to compete with PD-L1 for binding to PD-1 and their inhibitory properties against the PD-1/PD-L1 complex at the cellular level. The best results were obtained for the peptide PD-L1(111-127)(Y112C-I126C), named (L11), which displaced PD-L1 from binding to PD-1 in the competitive assay and inhibited the formation of the PD-1/PD-L1 complex. The (L11) peptide also exhibited strong affinity for PD-1. NMR studies revealed that (L11) does not form a well-defined secondary structure; however, MD simulation indicated that (L11) binds to PD-1 at the same place as PD-L1. After further optimization of the structure, the peptide inhibitor obtained in this study could also be used as a potential therapeutic compound targeting the PD-1/PD-L1 axis.

3.
Biochim Biophys Acta Biomembr ; 1866(3): 184285, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237885

RESUMO

A biological membrane is a structure characteristic for various cells and organelles present in almost all living organisms. Even though, it is one of the most common structures in organisms, where it serves crucial functions, a phospholipid bilayer may also take part in pathological processes leading to severe diseases. Research indicates that biological membranes have a profound impact on the pathological processes of oligomerization of amyloid-forming proteins. These processes are a hallmark of amyloid diseases, a group of pathological states involving, e.g., Parkinson's or Alzheimer's disease. Even though amyloidogenic diseases reap the harvest in modern societies, especially in elderly patients, the mechanisms governing the amyloid deposition are not clearly described. Therefore, the presented study focuses on the description of interactions between a model biological membrane (POPG) and one of amyloid forming proteins - human cystatin C. For the purpose of the study molecular dynamics simulations were applied to confirm interactions between the protein and POPG membrane. Next the NMR techniques were used to verify how the data obtained in solution compared to MD simulations and determine fragments of the protein responsible for interactions with POPG. Finally, circular dichroism was used to monitor the changes in secondary structure of the protein and size exclusion chromatography was used to monitor its oligomerization process. Obtained data indicates that the protein interacts with POPG submerging itself into the bilayer with the AS region. However, the presence of POPG bilayer does not significantly affect the structure or oligomerization process of human cystatin C.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Humanos , Idoso , Fosfolipídeos/metabolismo , Bicamadas Lipídicas/química , Proteínas Amiloidogênicas/análise , Proteínas Amiloidogênicas/metabolismo , Cistatina C/análise , Cistatina C/metabolismo , Membrana Celular/metabolismo , Amiloide
4.
Biomed Pharmacother ; 165: 115161, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37473684

RESUMO

Immune checkpoints can be divided into co-stimulatory and co-inhibitory molecules that regulate the activation and effector functions of T cells. The co-inhibitory pathways mediated by ICPs are used by cancer cells to escape from immune surveillance, and therefore the blockade of these receptor/ligand interactions is one of the strategies used in the treatment of cancer. The two main pathways currently under investigation are CTLA-4/CD80/CD86 and PD-1/PD-L1, and the monoclonal Abs targeting them have shown potent immunomodulatory effects and activity in clinical environments. Another interesting target in cancer treatment is the BTLA/HVEM complex. Binding of BTLA protein on T cells to HVEM on cancer cells leads to inhibition of T cell proliferation and cytokine production. In the presented work, we focused on blocking the HVEM protein using BTLA-derived peptides. Based on the crystal structure of the BTLA/HVEM complex and MM/GBSA analysis performed here, we designed and synthesized peptides, specifically fragments of BTLA protein. We subsequently checked the inhibitory capacities of these compounds using ELISA and a cellular reporter platform. Two of these peptides, namely BTLA(35-43) and BTLA(33-64)C58Abu displayed the most promising properties, and we therefore performed further studies to evaluate their affinity to HVEM protein, their stability in plasma and their effect on viability of human PBMCs. In addition, the 3D structure for the peptide BTLA(33-64)C58Abu was determined using NMR. Obtained data confirmed that the BTLA-derived peptides could be the basis for future drugs and their immunomodulatory potential merits further examination.


Assuntos
Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Humanos , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T , Peptídeos/química , Ligação Proteica
5.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835362

RESUMO

In this paper, we describe the chemical synthesis, preliminary evaluation of antimicrobial properties and mechanisms of action of a novel group of lipidated derivatives of three naturally occurring α-helical antimicrobial peptides, LL-I (VNWKKVLGKIIKVAK-NH2), LK6 (IKKILSKILLKKL-NH2), ATRA-1 (KRFKKFFKKLK-NH2). The obtained results showed that biological properties of the final compounds were defined both by the length of the fatty acid and by the structural and physico-chemical properties of the initial peptide. We consider C8-C12 length of the hydrocarbon chain as the optimal for antimicrobial activity improvement. However, the most active analogues exerted relatively high cytotoxicity toward keratinocytes, with the exception of the ATRA-1 derivatives, which had a higher selectivity for microbial cells. The ATRA-1 derivatives had relatively low cytotoxicity against healthy human keratinocytes but high cytotoxicity against human breast cancer cells. Taking into account that ATRA-1 analogues carry the highest positive net charge, it can be assumed that this feature contributes to cell selectivity. As expected, the studied lipopeptides showed a strong tendency to self-assembly into fibrils and/or elongated and spherical micelles, with the least cytotoxic ATRA-1 derivatives forming apparently smaller assemblies. The results of the study also confirmed that the bacterial cell membrane is the target for the studied compounds.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Humanos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Conformação Proteica em alfa-Hélice
6.
Bioorg Chem ; 128: 106047, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35963023

RESUMO

Over the past few years, many molecules such as monoclonal antibodies, affibodies, nanobodies, and small compounds have been designed and tested as inhibitors of PD-1/PD-L1 complex formation. Some of them have been successfully implemented into clinical oncology practice. However, the majority of these compounds have disadvantages and limitations, such as high production price, potential for immunogenicity and/or prolonged clearance. Thus, new inhibitors of the PD-1/PD-L1 immune checkpoints are needed. Recently, peptides emerged as potential novel approach for blocking receptor/ligand interaction. In the presented studies we have designed, synthesised and tested peptides, which are potential inhibitors of the PD-1/PD-L1 axis. The amino acid sequences of the designed peptides were based on the binding sites of PD-1 to PD-L1, as determined by the crystal structure of the protein complex and also based on MM/GBSA analysis. Interactions of the peptides with PD-L1 protein were confirmed using SPR, while their inhibitory properties were studied using cell-based PD-1/PD-L1 immune checkpoint blockade assays. The characterization of the peptides has shown that the peptides PD-1(119-142)T120C-E141C, PD-1(119-142)C123-S137C and PD-1(122-138)C123-S137C strongly bind to PD-L1 protein and disrupt the interaction of the proteins. PD-1(122-138)C123-S137C peptide was shown to have the best inhibitory potential from the panel of peptides. Its 3D NMR structure was determined and the binding site to PD-L1 was established using molecular modelling methods. Our results indicate that the PD-1 derived peptides are able to mimic the PD-1 protein and inhibit PD-1/PD-L1 complex formation.


Assuntos
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/metabolismo , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Peptídeos/química , Peptídeos/farmacologia , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/metabolismo
7.
Cells ; 11(10)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626677

RESUMO

Arginine-rich cell-penetrating peptides (RRCPPs) exhibit intrinsic neuroprotective effects on neurons injured by acute ischemic stroke. Conformational properties, interaction, and the ability to penetrate the neural membrane are critical for the neuroprotective effects of RRCCPs. In this study, we applied circular dichroism (CD) spectroscopy and coarse-grained molecular dynamics (CG MD) simulations to investigate the interactions of two RRCPPs, Tat(49-57)-NH2 (arginine-rich motif of Tat HIV-1 protein) and PTD4 (a less basic Ala-scan analog of the Tat peptide), with an artificial neuronal membrane (ANM). CD spectra showed that in an aqueous environment, such as phosphate-buffered saline, the peptides mostly adopted a random coil (PTD4) or a polyproline type II helical (Tat(49-57)-NH2) conformation. On the other hand, in the hydrophobic environment of the ANM liposomes, the peptides showed moderate conformational changes, especially around 200 nm, as indicated by CD curves. The changes induced by the liposomes were slightly more significant in the PTD4 peptide. However, the nature of the conformational changes could not be clearly defined. CG MD simulations showed that the peptides are quickly attracted to the neuronal lipid bilayer and bind preferentially to monosialotetrahexosylganglioside (DPG1) molecules. However, the peptides did not penetrate the membrane even at increasing concentrations. This suggests that the energy barrier required to break the strong peptide-lipid electrostatic interactions was not exceeded in the simulated models. The obtained results show a correlation between the potential of mean force parameter and a peptide's cell membrane-penetrating ability and neuroprotective properties.


Assuntos
Peptídeos Penetradores de Células , AVC Isquêmico , Fármacos Neuroprotetores , Arginina , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Produtos do Gene tat , Humanos , Lipossomos , Membranas Artificiais , Neurônios , Fármacos Neuroprotetores/farmacologia
8.
Bioorg Chem ; 122: 105748, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325694

RESUMO

Cancer immunotherapy using blockade of immune checkpoints is mainly based on monoclonal antibodies. Despite the tremendous success achieved by using those molecules to block immune checkpoint proteins, antibodies possess some weaknesses, which means that there is still a need to search for new compounds as alternatives to antibodies. Many current approaches are focused on use of peptides/peptidomimetics to destroy receptor/ligand interactions. Our studies concern blockade of the BTLA/HVEM complex, which generates an inhibitory effect on the immune response resulting in tolerance to cancer cells. To design inhibitors of such proteins binding we based our work on the amino acid sequence and structure of a ligand of HVEM protein, namely glycoprotein D, which possesses the same binding site on HVEM as BTLA protein. To disrupt the BTLA and HVEM interaction we designed several peptides, all fragments of glycoprotein D, and tested their binding to HVEM using SPR and their ability to inhibit the BTLA/HVEM complex formation using ELISA tests and cellular reporter platforms. That led to identification of two peptides, namely gD(1-36)(K10C-D30C) and gD(1-36)(A12C-L25C), which interact with HVEM and possess blocking capacities. Both peptides are not cytotoxic to human PBMCs, and show stability in human plasma. We also studied the 3D structure of the gD(1-36)(K10C-D30C) peptide using NMR and molecular modeling methods. The obtained data reveal that it possesses an unstructured conformation and binds to HVEM in the same location as gD and BTLA. All these results suggest that peptides based on the binding fragment of gD protein represent promising immunomodulation agents for future cancer immunotherapy.


Assuntos
Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Sequência de Aminoácidos , Sítios de Ligação , Glicoproteínas , Humanos , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo
9.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804887

RESUMO

Ultrashort cationic lipopeptides (USCLs) and gemini cationic surfactants are classes of potent antimicrobials. Our recent study has shown that the branching and shortening of the fatty acids chains with the simultaneous addition of a hydrophobic N-terminal amino acid in USCLs result in compounds with enhanced selectivity. Here, this approach was introduced into arginine-rich gemini cationic surfactants. l-cystine diamide and l-lysine amide linkers were used as spacers. Antimicrobial activity against planktonic and biofilm cultures of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) strains and Candida sp. as well as hemolytic and cytotoxic activities were examined. Moreover, antimicrobial activity in the presence of human serum and the ability to form micelles were evaluated. Membrane permeabilization study, serum stability assay, and molecular dynamics were performed. Generally, critical aggregation concentration was linearly correlated with hydrophobicity. Gemini surfactants were more active than the parent USCLs, and they turned out to be selective antimicrobial agents with relatively low hemolytic and cytotoxic activities. Geminis with the l-cystine diamide spacer seem to be less cytotoxic than their l-lysine amide counterparts, but they exhibited lower antibiofilm and antimicrobial activities in serum. In some cases, geminis with branched fatty acid chains and N-terminal hydrophobic amino acid resides exhibited enhanced selectivity to pathogens over human cells.


Assuntos
Peptídeos Catiônicos Antimicrobianos/síntese química , Biofilmes/efeitos dos fármacos , Lipoproteínas/síntese química , Tensoativos/síntese química , Motivos de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Arginina/química , Candida/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cistina/química , Enterobacteriaceae/efeitos dos fármacos , Ácidos Graxos/química , Hemólise , Interações Hidrofóbicas e Hidrofílicas , Lipoproteínas/farmacologia , Lisina/química , Micelas , Tensoativos/farmacologia
10.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806461

RESUMO

The present study aimed to synthesize novel polycationic polymers composed of N-substituted L-2,3-diaminopropionic acid residues (DAPEGs) and investigate their cell permeability, cytotoxicity, and DNA-binding ability. The most efficient cell membrane-penetrating compounds (O2Oc-Dap(GO2)n-O2Oc-NH2, where n = 4, 6, and 8) showed dsDNA binding with a binding constant in the micromolar range (0.3, 3.4, and 0.19 µM, respectively) and were not cytotoxic to HB2 and MDA-MB-231 cells. Selected compounds used in the transfection of a GFP plasmid showed high transfection efficacy and minimal cytotoxicity. Their interaction with plasmid DNA and the increasing length of the main chain of tested compounds strongly influenced the organization and shape of the flower-like nanostructures formed, which were unique for 5/6-FAM-O2Oc-[Dap(GO2)]8-O2Oc-NH2 and typical for large proteins.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Ácidos Nucleicos/metabolismo , Polímeros/farmacologia , beta-Alanina/análogos & derivados , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Nanoestruturas/química , Plasmídeos/metabolismo , Transfecção/métodos , beta-Alanina/farmacologia
11.
Chem Biodivers ; 18(2): e2000883, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33427369

RESUMO

Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a result, a reduced number of MHC class I molecules appear on the surface of infected cells and, thus, the immune system is not efficiently activated. BoHV-1-encoded UL49.5 protein is one such TAP transporter inhibitor. This protein binds to TAP in such a way that its N-terminal fragment interacts with the loops of the TAP complex, and the C-terminus stimulates proteasomal degradation of TAP. Previous studies have indicated certain amino acid residues, especially the RRE(9-11) motif, within the helical structure of the UL49.5 N-terminal fragment, as being crucial to the protein's activity. In this work, we investigated the effects of modifications within the RRE region on the spatial structure of the UL49.5 N-terminal fragment. The introduced RRE(9-11) variations were designed to abolish or stabilize the structure of the α-helix and, consequently, to increase or decrease protein activity compared to the wild type. The terminal structure of the peptides was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane-mimetic or membrane-model environments. Our structural results show that in the RRE(9-11)AAA and E11G peptides the helical structure has been stabilized, whereas for the RRE(9-11)GGG peptide, as expected, the helix structure has partially unfolded compared to the native structure. These RRE modifications, in the context of the entire UL49.5 proteins, slightly altered their biological activity in human cells.


Assuntos
Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/química , Rinotraqueíte Infecciosa Bovina/virologia , Proteínas do Envelope Viral/química , Motivos de Aminoácidos , Animais , Bovinos , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química , Conformação Proteica , Estabilidade Proteica
12.
Membranes (Basel) ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374409

RESUMO

Human cystatin C (hCC), a member of the superfamily of papain-like cysteine protease inhibitors, is the most widespread cystatin in human body fluids. Physiologically active hCC is a monomer, which dimerization and oligomerization lead to the formation of the inactive, insoluble amyloid form of the protein, strictly associated with cerebral amyloid angiopathy, a severe state causing death among young patients. It is known, that biological membranes may accelerate the oligomerization processes of amyloidogenic proteins. Therefore, in this study, we describe an influence of membrane mimetic environment-mixed dodecylphosphocholine:sodium dodecyl sulfate (DPC:SDS) micelle (molar ratio 5:1)-on the effect of the hCC oligomerization. The hCC-micelle interactions were analyzed with size exclusion chromatography, circular dichroism, and nuclear magnetic resonance spectroscopy. The experiments were performed on the wild-type (WT) cystatin C, and two hCC variants-V57P and V57G. Collected experimental data were supplemented with molecular dynamic simulations, making it possible to highlight the binding interface and select the residues involved in interactions with the micelle. Obtained data shows that the mixed DPC:SDS micelle does not accelerate the oligomerization of protein and even reverses the hCC dimerization process.

13.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003569

RESUMO

Ultrashort cationic lipopeptides (USCLs) are considered to be a promising class of antimicrobials with high activity against a broad-spectrum of microorganisms. However, the majority of these compounds are characterized by significant toxicity toward human cells, which hinders their potential application. To overcome those limitations, several approaches have been advanced. One of these is disulfide cyclization that has been shown to improve drug-like characteristics of peptides. In this article the effect of disulfide cyclization of the polar head of N-palmitoylated USCLs on in vitro biological activity has been studied. Lipopeptides used in this study consisted of three or four basic amino acids (lysine and arginine) and cystine in a cyclic peptide. In general, disulfide cyclization of the lipopeptides resulted in peptides with reduced cytotoxicity. Disulfide-cyclized USCLs exhibited improved selectivity between Candida sp., Gram-positive strains and normal cells in contrast to their linear counterparts. Interactions between selected USCLs and membranes were studied by molecular dynamics simulations using a coarse-grained force field. Moreover, membrane permeabilization properties and kinetics were examined. Fluorescence and transmission electron microscopy revealed damage to Candida cell membrane and organelles. Concluding, USCLs are strong membrane disruptors and disulfide cyclization of polar head can have a beneficial effect on its in vitro selectivity between Candida sp. and normal human cells.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proliferação de Células/efeitos dos fármacos , Lipopeptídeos/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Candida/efeitos dos fármacos , Ciclização , Dissulfetos/química , Dissulfetos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Lipopeptídeos/química , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
14.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454948

RESUMO

The transmembrane (TM) proteins are gateways for molecular transport across the cell membrane that are often selected as potential targets for drug design. The bilitranslocase (BTL) protein facilitates the uptake of various anions, such as bilirubin, from the blood into the liver cells. As previously established, there are four hydrophobic transmembrane segments (TM1-TM4), which constitute the structure of the transmembrane channel of the BTL protein. In our previous studies, the 3D high-resolution structure of the TM2 and TM3 transmembrane fragments of the BTL in sodium dodecyl sulfate (SDS) micellar media were solved using Nuclear Magnetic Resonance (NMR) spectroscopy and molecular dynamics simulations (MD). The high-resolution 3D structure of the fourth transmembrane region (TM4) of the BTL was evaluated using NMR spectroscopy in two different micellar media, anionic SDS and zwitterionic DPC (dodecylphosphocholine). The presented experimental data revealed the existence of an α -helical conformation in the central part of the TM4 in both micellar media. In the case of SDS surfactant, the α -helical conformation is observed for the Pro258-Asn269 region. The use of the zwitterionic DPC micelle leads to the formation of an amphipathic α -helix, which is characterized by the extension of the central α -helix in the TM4 fragment to Phe257-Thr271. The complex character of the dynamic processes in the TM4 peptide within both surfactants was analyzed based on the relaxation data acquired on 15 N and 31 P isotopes. Contrary to previously published and present observations in the SDS micelle, the zwitterionic DPC environment leads to intensive low-frequency molecular dynamic processes in the TM4 fragment.


Assuntos
Ceruloplasmina/química , Proteínas de Membrana/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Ceruloplasmina/metabolismo , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Micelas , Peptídeos/química , Peptídeos/metabolismo , Relação Estrutura-Atividade
15.
Protein Pept Lett ; 26(6): 423-434, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-30864495

RESUMO

BACKGROUND: Antibacterial peptidyl derivative - Cystapep 1, was previously found to be active both against antibiotic-resistant staphylococci and streptococci as well as antibioticsusceptible strains of these species. Therefore, it is a promising lead compound to search for new antimicrobial peptidomimetics. OBJECTIVES: We focused on identifying structural elements that are responsible for the biological activity of Cystapep 1 and its five analogues. We tried to find an answer to the question about the mechanism of action of the tested compounds. Therefore, we have investigated in details the possibility of interacting these compounds with biological membrane mimetics. METHODS: The subject compounds were synthesized in solution, purified and characterized by HPLC and mass spectrometry. Then, the staphylococci susceptibility tests were performed and their cytotoxicity was established. The results of Cystapep 1 and its analogues interactions with model target were examined using the DSC and ITC techniques. At the end the spatial structures of the tested peptidomimetics using NMR technique were obtained. RESULTS: Antimicrobial and cytotoxicity tests show that Cystapep 1 and its peptidomimetic V are good drug candidates. DSC and ITC studies indicate that disruption of membrane is not the only possible mechanism of action of Cystapep 1-like compounds. For Cystapep 1 itself, a multi-step mechanism of interaction with a negatively charged membrane is observed, which indicates other processes occurring alongside the binding process. The conformational analysis indicated the presence of a hydrophobic cluster, composed of certain side chains, only in the structures of active peptidomimetics. This can facilitate the anchoring of the peptidyl derivatives to the bacterial membrane. CONCLUSION: An increase in hydrophobicity of the peptidomimetics improved the antimicrobial activity against S. aureus, however there is no simple correlation between the biological activity and the strength of interactions of the peptidyl with bacterial membrane.


Assuntos
Antibacterianos/química , Cistatina C/química , Inibidores de Cisteína Proteinase/química , Dipeptídeos/química , Peptidomiméticos/química , Animais , Antibacterianos/farmacologia , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Peptidomiméticos/farmacologia , Conformação Proteica , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
16.
Biochim Biophys Acta Biomembr ; 1861(5): 926-938, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772281

RESUMO

The transporter associated with antigen processing (TAP) directly participates in the immune response as a key component of the cytosolic peptide to major histocompatibility complex (MHC) class I protein loading machinery. This makes TAP an important target for viruses avoiding recognition by CD8+ T lymphocytes. Its activity can be suppressed by the UL49.5 protein produced by bovine herpesvirus 1, although the mechanism of this inhibition has not been understood so far. Therefore, the main goal of our study was to investigate the 3D structure of bovine herpesvirus 1 - encoded UL49.5 protein. The final structure of the inhibitor was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane mimetic environments. In NMR studies, UL49.5 was represented by two fragments: the extracellular region (residues 1-35) and the transmembrane-intracellular fragment (residues 36-75), displaying various functions during viral invasion. After the empirical structure determination, a molecular docking procedure was used to predict the complex of UL49.5 with the TAP heterodimer. Our results revealed that UL49.5 adopted a highly flexible membrane-proximal helical structure in the extracellular part. In the transmembrane region, we observed two short α-helices. Furthermore, the cytoplasmic part had an unordered structure. Finally, we propose three different orientations of UL49.5 in the complex with TAP. Our studies provide, for the first time, the experimental structural information on UL49.5 and structure-based insight in its mechanism of action which might be helpful in designing new drugs against viral infections.


Assuntos
Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas do Envelope Viral/análise , Proteínas Virais/análise , Animais , Bovinos , Conformação Proteica , Proteínas do Envelope Viral/síntese química , Proteínas do Envelope Viral/isolamento & purificação , Proteínas Virais/síntese química , Proteínas Virais/isolamento & purificação
18.
Biochem Biophys Res Commun ; 483(1): 258-263, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28025143

RESUMO

Molecular imaging can report on the status of the tumor immune microenvironment and guide immunotherapeutic strategies to enhance the efficacy of immune modulation therapies. Imaging agents that can rapidly report on targets of immunomodulatory therapies are few. The programmed death ligand 1 (PD-L1) is an immune checkpoint protein over-expressed in several cancers and contributes to tumor immune suppression. Tumor PD-L1 expression is indicative of tumor response to PD-1 and PD-L1 targeted therapies. Herein, we report a highly specific peptide-based positron emission tomography (PET) imaging agent for PD-L1. We assessed the binding modes of the peptide WL12 to PD-L1 by docking studies, developed a copper-64 labeled WL12 ([64Cu]WL12), and performed its evaluation in vitro, and in vivo by PET imaging, biodistribution and blocking studies. Our results show that [64Cu]WL12 can be used to detect tumor PD-L1 expression specifically and soon after injection of the radiotracer, to fit within the standard clinical workflow of imaging within 60 min of administration.


Assuntos
Antígeno B7-H1/análise , Neoplasias/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Animais , Antígeno B7-H1/metabolismo , Células CHO , Radioisótopos de Cobre/administração & dosagem , Radioisótopos de Cobre/farmacocinética , Cricetulus , Usos Diagnósticos de Compostos Químicos , Feminino , Humanos , Camundongos SCID , Simulação de Acoplamento Molecular , Neoplasias/diagnóstico por imagem , Peptídeos/administração & dosagem , Receptor de Morte Celular Programada 1/metabolismo , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Postepy Biochem ; 63(3): 179-184, 2017.
Artigo em Polonês | MEDLINE | ID: mdl-29294261

RESUMO

Cancer is one of the most common cause of death nowadays. Thorough knowledge of the mechanisms of tumorigenesis and invasiveness of tumor cells is crucial for the development of molecular targeted therapies, which are believed to be future treatment of this type of diseases. Proteolytic enzymes are one of the factors involved in the development of cancer cells, very often used as markers of tumor progression. In this paper we describe the role of enzymes termed proprotein convertases (PCs) in pathogenesis and progress of cancer diseases. Furthermore, we indicate potential directions for the development of therapeutic strategies designed based on PCs inhibitors.


Assuntos
Neoplasias , Transformação Celular Neoplásica , Humanos , Terapia de Alvo Molecular , Pró-Proteína Convertases , Serina Endopeptidases
20.
J Pept Sci ; 22(11-12): 723-730, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27862720

RESUMO

This is the study on the effect of opiorphin, sialorphin and their analogs on antitumor activity. We demonstrated that conjugation of opiorphin and sialorphin with a proapoptotic, antimicrobial peptide klak (klaklakklaklak) led to compounds (opio-klak and sialo-klak) that were cytotoxic against cancer cells (LN18, PC3, A549, HCT116 and B10-F16) in the MTT test. The conjugated analogs were designed to increase the effectiveness of the peptide. The opio-klak derivative was the most effective in the in vitro assays and led to a decrease in viability of cancer cells over time as compared with that of untreated controls. In contrast, treatment with either the untargeted klak peptide or opiorphin as a negative control led to a negligible loss in viability. Antitumor effect of the opio-klak was also observed in vivo in murine melanoma tumor-bearing mice. Cessation of peptide administration resulted in tumor regrowth. Our results are seemingly valuable for the development of opiorphin analogs with potential clinical applications. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Oligopeptídeos/farmacologia , Precursores de Proteínas/farmacologia , Proteínas e Peptídeos Salivares/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Antineoplásicos/síntese química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/síntese química , Precursores de Proteínas/síntese química , Proteínas e Peptídeos Salivares/síntese química , Neoplasias Cutâneas/patologia , Técnicas de Síntese em Fase Sólida , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA