Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(13): 1674-1683, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38898603

RESUMO

N-Acetylnorloline synthase (LolO) is one of several iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenases that catalyze sequential reactions of different types in the biosynthesis of valuable natural products. LolO hydroxylates C2 of 1-exo-acetamidopyrrolizidine before coupling the C2-bonded oxygen to C7 to form the tricyclic loline core. Each reaction requires cleavage of a C-H bond by an oxoiron(IV) (ferryl) intermediate; however, different carbons are targeted, and the carbon radicals have different fates. Prior studies indicated that the substrate-cofactor disposition (SCD) controls the site of H· abstraction and can affect the reaction outcome. These indications led us to determine whether a change in SCD from the first to the second LolO reaction might contribute to the observed reactivity switch. Whereas the single ferryl complex in the C2 hydroxylation reaction was previously shown to have typical Mössbauer parameters, one of two ferryl complexes to accumulate during the oxacyclization reaction has the highest isomer shift seen to date for such a complex and abstracts H· from C7 ∼ 20 times faster than does the first ferryl complex in its previously reported off-pathway hydroxylation of C7. The detectable hydroxylation of C7 in competition with cyclization by the second ferryl complex is not enhanced in 2H2O solvent, suggesting that the C2 hydroxyl is deprotonated prior to C7-H cleavage. These observations are consistent with the coordination of the C2 oxygen to the ferryl complex, which may reorient its oxo ligand, the substrate, or both to positions more favorable for C7-H cleavage and oxacyclization.


Assuntos
Ferro , Ácidos Cetoglutáricos , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/química , Ferro/metabolismo , Ferro/química , Hidroxilação , Ciclização , Oxigenases/metabolismo , Oxigenases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
2.
ACS Bio Med Chem Au ; 2(5): 509-520, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36281299

RESUMO

Lipoic acid is an eight-carbon sulfur-containing biomolecule that functions primarily as a cofactor in several multienzyme complexes. It is biosynthesized as an attachment to a specific lysyl residue on one of the subunits of these multienzyme complexes. In Escherichia coli and many other organisms, this biosynthetic pathway involves two dedicated proteins: octanoyltransferase (LipB) and lipoyl synthase (LipA). LipB transfers an n-octanoyl chain from the octanoyl-acyl carrier protein to the target lysyl residue, and then, LipA attaches two sulfur atoms (one at C6 and one at C8) to give the final lipoyl cofactor. All classical lipoyl synthases (LSs) are radical S-adenosylmethionine (SAM) enzymes, which use an [Fe4S4] cluster to reductively cleave SAM to generate a 5'-deoxyadenosyl 5'-radical. Classical LSs also contain a second [Fe4S4] cluster that serves as the source of both appended sulfur atoms. Recently, a novel pathway for generating the lipoyl cofactor was reported. This pathway replaces the canonical LS with two proteins, LipS1 and LipS2, which act together to catalyze formation of the lipoyl cofactor. In this work, we further characterize LipS1 and LipS2 biochemically and spectroscopically. Although LipS1 and LipS2 were previously annotated as biotin synthases, we show that both proteins, unlike E. coli biotin synthase, contain two [Fe4S4] clusters. We identify the cluster ligands to both iron-sulfur clusters in both proteins and show that LipS2 acts only on an octanoyl-containing substrate, while LipS1 acts only on an 8-mercaptooctanoyl-containing substrate. Therefore, similarly to E. coli biotin synthase and in contrast to E. coli LipA, sulfur attachment takes place initially at the terminal carbon (C8) and then at the C6 methylene carbon.

3.
ACS Bio Med Chem Au ; 2(5): 456-468, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36281303

RESUMO

Lipoyl synthase (LS) catalyzes the last step in the biosynthesis of the lipoyl cofactor, which is the attachment of sulfur atoms at C6 and C8 of an n-octanoyllysyl side chain of a lipoyl carrier protein (LCP). The protein is a member of the radical S-adenosylmethionine (SAM) superfamily of enzymes, which use SAM as a precursor to a 5'-deoxyadenosyl 5'-radical (5'-dA·). The role of the 5'-dA· in the LS reaction is to abstract hydrogen atoms from C6 and C8 of the octanoyl moiety of the substrate to initiate subsequent sulfur attachment. All radical SAM enzymes have at least one [4Fe-4S] cluster that is used in the reductive cleavage of SAM to generate the 5'-dA·; however, LSs contain an additional auxiliary [4Fe-4S] cluster from which sulfur atoms are extracted during turnover, leading to degradation of the cluster. Therefore, these enzymes catalyze only 1 turnover in the absence of a system that restores the auxiliary cluster. In Escherichia coli, the auxiliary cluster of LS can be regenerated by the iron-sulfur (Fe-S) cluster carrier protein NfuA as fast as catalysis takes place, and less efficiently by IscU. NFU1 is the human ortholog of E. coli NfuA and has been shown to interact directly with human LS (i.e., LIAS) in yeast two-hybrid analyses. Herein, we show that NFU1 and LIAS form a tight complex in vitro and that NFU1 can efficiently restore the auxiliary cluster of LIAS during turnover. We also show that BOLA3, previously identified as being critical in the biosynthesis of the lipoyl cofactor in humans and Saccharomyces cerevisiae, has no direct effect on Fe-S cluster transfer from NFU1 or GLRX5 to LIAS. Further, we show that ISCA1 and ISCA2 can enhance LIAS turnover, but only slightly.

4.
Nat Commun ; 11(1): 6310, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298951

RESUMO

Heme biosynthesis and iron-sulfur cluster (ISC) biogenesis are two major mammalian metabolic pathways that require iron. It has long been known that these two pathways interconnect, but the previously described interactions do not fully explain why heme biosynthesis depends on intact ISC biogenesis. Herein we identify a previously unrecognized connection between these two pathways through our discovery that human aminolevulinic acid dehydratase (ALAD), which catalyzes the second step of heme biosynthesis, is an Fe-S protein. We find that several highly conserved cysteines and an Ala306-Phe307-Arg308 motif of human ALAD are important for [Fe4S4] cluster acquisition and coordination. The enzymatic activity of human ALAD is greatly reduced upon loss of its Fe-S cluster, which results in reduced heme biosynthesis in human cells. As ALAD provides an early Fe-S-dependent checkpoint in the heme biosynthetic pathway, our findings help explain why heme biosynthesis depends on intact ISC biogenesis.


Assuntos
Heme/biossíntese , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Sintase do Porfobilinogênio/metabolismo , Enxofre/metabolismo , Motivos de Aminoácidos , Vias Biossintéticas , Linhagem Celular , Coenzimas/metabolismo , Cisteína/metabolismo , Humanos , Proteínas Ferro-Enxofre/genética , Sintase do Porfobilinogênio/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
J Am Chem Soc ; 142(27): 11818-11828, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32511919

RESUMO

The alkylating warhead of the pancreatic cancer drug streptozotocin (SZN) contains an N-nitrosourea moiety constructed from Nω-methyl-l-arginine (l-NMA) by the multi-domain metalloenzyme SznF. The enzyme's central heme-oxygenase-like (HO-like) domain sequentially hydroxylates Nδ and Nω' of l-NMA. Its C-terminal cupin domain then rearranges the triply modified arginine to Nδ-hydroxy-Nω-methyl-Nω-nitroso-l-citrulline, the proposed donor of the functional pharmacophore. Here we show that the HO-like domain of SznF can bind Fe(II) and use it to capture O2, forming a peroxo-Fe2(III/III) intermediate. This intermediate has absorption- and Mössbauer-spectroscopic features similar to those of complexes previously trapped in ferritin-like diiron oxidases and oxygenases (FDOs) and, more recently, the HO-like fatty acid oxidase UndA. The SznF peroxo-Fe2(III/III) complex is an intermediate in both hydroxylation steps, as shown by the concentration-dependent acceleration of its decay upon exposure to either l-NMA or Nδ-hydroxy-Nω-methyl-l-Arg (l-HMA). The Fe2(III/III) cluster produced upon decay of the intermediate has a small Mössbauer quadrupole splitting parameter, implying that, unlike the corresponding product states of many FDOs, it lacks an oxo-bridge. The subsequent decomposition of the product cluster to one or more paramagnetic Fe(III) species over several hours explains why SznF was previously purified and crystallographically characterized without its cofactor. Programmed instability of the oxidized form of the cofactor appears to be a unifying characteristic of the emerging superfamily of HO-like diiron oxidases and oxygenases (HDOs).


Assuntos
Proteínas de Bactérias/metabolismo , Compostos Férricos/metabolismo , Metaloproteínas/metabolismo , Compostos de Nitrosoureia/metabolismo , Estreptozocina/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Compostos Férricos/química , Hidroxilação , Metaloproteínas/química , Metaloproteínas/isolamento & purificação , Modelos Moleculares , Estrutura Molecular , Compostos de Nitrosoureia/química , Streptomyces/enzimologia , Estreptozocina/química
6.
Angew Chem Int Ed Engl ; 58(49): 17695-17699, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31550416

RESUMO

Non-heme high-spin (hs) {FeNO}8 complexes have been proposed as important intermediates towards N2 O formation in flavodiiron NO reductases (FNORs). Many hs-{FeNO}8 complexes disproportionate by forming dinitrosyl iron complexes (DNICs), but the mechanism of this reaction is not understood. While investigating this process, we isolated a new type of non-heme iron nitrosyl complex that is stabilized by an unexpected spin-state change. Upon reduction of the hs-{FeNO}7 complex, [Fe(TPA)(NO)(OTf)](OTf) (1), the N-O stretching band vanishes, but no sign of DNIC or N2 O formation is observed. Instead, the dimer, [Fe2 (TPA)2 (NO)2 ](OTf)2 (2) could be isolated and structurally characterized. We propose that 2 is formed from dimerization of the hs-{FeNO}8 intermediate, followed by a spin state change of the iron centers to low-spin (ls), and speculate that 2 models intermediates in hs-{FeNO}8 complexes that precede the disproportionation reaction.


Assuntos
Ferro/química , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Dimerização , Ligantes , Conformação Molecular , Oxirredutases/metabolismo , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA