Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 37(7): 1071-1085, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38958636

RESUMO

Parkinson's disease (PD) affects more people worldwide than just aging alone can explain. This is likely due to environmental influences, genetic makeup, and changes in daily habits. The disease develops in a complex way, with movement problems caused by Lewy bodies and the loss of dopamine-producing neurons. Some research suggests Lewy bodies might start in the gut, hinting at a connection between these structures and gut health in PD patients. These patients often have different gut bacteria and metabolites. Pesticides are known to increase the risk of PD, with evidence showing they harm more than just dopamine neurons. Long-term exposure to pesticides in food might affect the gut barrier, gut bacteria, and the blood-brain barrier, but the exact link is still unknown. This review looks at how pesticides and gut bacteria separately influence PD development and progression, highlighting the harmful effects of pesticides and changes in gut bacteria. We have examined the interaction between pesticides and gut bacteria in PD patients, summarizing how pesticides cause imbalances in gut bacteria, the resulting changes, and their overall effects on the PD prognosis.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Praguicidas , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Praguicidas/metabolismo , Doença de Parkinson/microbiologia , Doença de Parkinson/metabolismo , Animais
2.
Biochem Pharmacol ; : 116326, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815626

RESUMO

Hepatic urea cycle, previously known as ornithine cycle, is the chief biochemical pathway that deals with the disposal of excessive nitrogen in form of urea, resulted from protein breakdown and concomitant condensation of ammonia. Enzymes involved in urea cycle are expressed differentially outside hepatic tissue and are mostly involved in production of arginine from citrulline in arginine-depleted condition. Inline, cancer cells frequently adapt metabolic rewiring to support sufficient biomass production in order to sustain tumor cell survival, multiplication and subsequent growth. For the accomplishment of this aim, metabolic reprogramming in cancer cells is set in way so that cellular nitrogen and carbon repertoire can be utilized and channelized maximally towards anabolic reactions. A strategy to meet such outcome is to cut down unnecessary catabolic reactions and nitrogen elimination. Thus, transfigured urea cycle is a hallmark of neoplasia. During oncogenesis, altered expression and regulation of enzymes involved in urea cycle is a revolutionary approach meet to maximum incorporation of nitrogen for sustaining tumor specific biogenesis. Currently, we have reviewed neoplasm-specific deregulations of urea cycle-enzymes in different types and stages of cancers suggesting its context-oriented dynamic nature. Considering such insight to be valuable in terms of prospective cancer diagnosis and therapeutics adaptive evolution of deregulated urea cycle has been enlightened.

3.
Arch Toxicol ; 98(8): 2353-2391, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795134

RESUMO

The exploration of natural products as potential agents for cancer treatment has garnered significant attention in recent years. In this comprehensive review, we delve into the diverse array of natural compounds, including alkaloids, carbohydrates, flavonoids, lignans, polyketides, saponins, tannins, and terpenoids, highlighting their emerging roles in cancer therapy. These compounds, derived from various botanical sources, exhibit a wide range of mechanisms of action, targeting critical pathways involved in cancer progression such as cell proliferation, apoptosis, angiogenesis, and metastasis. Through a meticulous examination of preclinical and clinical studies, we provide insights into the therapeutic potential of these natural products across different cancer types. Furthermore, we discuss the advantages and challenges associated with their use in cancer treatment, emphasizing the need for further research to optimize their efficacy, pharmacokinetics, and delivery methods. Overall, this review underscores the importance of natural products in advancing cancer therapeutics and paves the way for future investigations into their clinical applications.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos/uso terapêutico
4.
Artigo em Inglês | MEDLINE | ID: mdl-38746073

RESUMO

This study was conducted to isolate and identify the chemical compounds from the roots of Aloe debrana (L.) and evaluate their antioxidant and antibacterial activities. From the acetone (99.5%) extract of the roots of this plant, four anthraquinones, such as chrysophanol (1), asphodeline (2), aloesaponarin I (5), and laccaic acid D-methyl ester (6), and a new catechol derivative, 5-allyl-3-methoxybenzene-1,2-diol (3), were isolated and elucidated by different chromatographic and spectroscopic methods together with linoleic acid (4), respectively. Compounds 2, 3, and 4 were reported here for the first time from this plant and compound 3 from the genus Aloe. The compounds were evaluated for their antioxidant activity using H2O2 and DPPH assays and bactericidal activity against S. aureus and E. coli. Compounds 3 and 6 showed highest antioxidant activities with IC50 values of 19.38 ± 0.64 and 32.81 ± 0.78 µg/mL in DPPH, and 28.52 ± 1.08 and 27.31 ± 1.46 µg/mL in H2O2, respectively. The isolated compounds also demonstrated considerable activity towards S. aureus. Among these compounds, compound 3 exhibited the highest activity (91.20 ± 0.12% and 9.14 ± 0.93 mm at 1.0 mg/mL) against this bacterium. The overall results suggest that the isolated compounds may be considered as potential sources of the bioactive agents to be used in the pharmacological, food, and other industries. Moreover, their high sensitivity against S. aureus may also support the use of A. debrana plant in the traditional medicine to treat wounds. Therefore, the isolated compounds are responsible for medicinal properties of this plant.

6.
ACS Appl Bio Mater ; 7(3): 1656-1670, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38364267

RESUMO

Triple-negative breast cancer (TNBC) is considered to be one of the most difficult subtypes of breast cancer (BC) to treat. The sheer absence of certain receptors makes it very tough to target, leaving high-dose chemotherapy as probably the sole therapeutic option at the cost of nonspecific toxic effects. Carnosic acid (CA) has been established as a potential chemotherapeutic agent against a range of cancer cells. However, its in vivo chemotherapeutic potential is significantly challenged due to its poor pharmacokinetic attributes. In this study, poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) were formulated to circumvent the biopharmaceutical limitations of CA. CA-loaded polymeric NPs (CA-PLGA NPs) have been evaluated as a potential therapeutic option in the treatment of TNBC. Different in vitro studies exhibited that CA-PLGA NPs significantly provoked oxidative-stress-mediated apoptotic death in MDA-MB-231 cells. The improved anticancer potential of CA-PLGA NPs over CA was found to be associated with improved cellular uptake of the nanoformulation by TNBC cells. In vivo studies also established the improvement in the chemotherapeutic efficacy of CA-nanoformulation over that of free CA without showing any sign of systemic toxicity. Thus, CA-PLGA NPs emerge as a promising candidate to fix two bugs with a single code, resolving biopharmaceutical attributes of CA as well as introducing a treatment option for TNBC.


Assuntos
Abietanos , Produtos Biológicos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Disponibilidade Biológica , Polímeros , Produtos Biológicos/uso terapêutico
7.
Cell Signal ; 117: 111089, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331012

RESUMO

A bunch of complexes harboring vanadium as metal centers have been reported to exhibit a wide array of antineoplastic properties that come under non­platinum metallodrug series and emerge to offer alternative therapeutic strategies from the mechanistic behaviors of platinum-drugs. Though antineoplastic activities of vanado-complexes have been documented against several animal and xenografted human cancers, the definite mechanism of action is yet to unveil. In present study, a novel water soluble 1-methylimidazole substituted mononuclear dipicolinic acid based oxidovanadium (IV) complex (OVMI) has been evaluated for its antineoplastic properties in breast carcinoma both in vitro and in vivo. OVMI has been reported to generate cytotoxicity in human triple negative breast carcinoma cells, MDA-MB-231 as well as in mouse 4T1 cells by priming them for apoptosis. ROS-mediated, mitochondria-dependent as well as ER-stress-evoked apoptotic death seemed to be main operational hub guiding the cytotoxicity of OVMI in vitro. Moreover, OVMI has been noticed to elicit antimetastatic effect in vitro. Therapeutic application of OVMI has been extended on 4T1-based mammary tumor of female Balb/c mice, where it has been found to reduce tumor size, volume and restore general tissue architecture successfully to a great extent. Apart from that, OVMI has been documented to limit 4T1-based secondary pulmonary metastasis along with being non-toxic and biocompatible in vivo.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias de Mama Triplo Negativas , Feminino , Animais , Camundongos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Apoptose , Carcinoma/tratamento farmacológico , Água/farmacologia , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Proliferação de Células
8.
Chem Res Toxicol ; 37(2): 137-180, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38011513

RESUMO

Breast cancer (BC) is one of the most heterogeneous groups of cancer. As every biotype of BC is unique and presents a particular "omic" signature, they are increasingly characterized nowadays with novel mass spectrometry (MS) strategies. BC therapeutic approaches are primarily based on the two features of human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) positivity. Various strategic MS implementations are reported in studies of BC also involving data independent acquisitions (DIAs) of MS which report novel differential proteomic, lipidomic, proteogenomic, phosphoproteomic, and metabolomic characterizations associated with the disease and its therapeutics. Recently many "omic" studies have aimed to identify distinct subsidiary biotypes for diagnosis, prognosis, and targets of treatment. Along with these, drug-induced-resistance phenotypes are characterized by "omic" changes. These identifying aspects of the disease may influence treatment outcomes in the near future. Drug quantifications and characterizations are also done regularly and have implications in therapeutic monitoring and in drug efficacy assessments. We report these studies, mentioning their implications toward the understanding of BC. We briefly provide the MS instrumentation principles that are adopted in such studies as an overview with a brief outlook on DIA-MS strategies. In all of these, we have chosen a model cancer for its revelations through MS-based "omics".


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Proteômica , Receptores de Estrogênio/metabolismo , Prognóstico , Espectrometria de Massas
12.
Cell Signal ; 111: 110876, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37640193

RESUMO

Selective initiation of programmed cell death in cancer cells than normal cells is reflected as an attractive chemotherapeutic strategy. In the current study, a series of synthetic bis-coumarin derivatives were synthesized possessing reactive oxygen species (ROS) modulating functional groups and examined in four cancerous and two normal cell lines for their cytotoxic ability using MTT assay. Among these compounds, 3 l emerged as the most promising derivative in persuading apoptosis in human renal carcinoma cells (SKRC-45) among diverse cancer cell lines. 3 l causes significantly less cytotoxicity to normal kidney cells compared to cisplatin. This compound was able to induce apoptosis and cell-cycle arrest by modulating the p53 mediated apoptotic pathways via the generation of ROS, decreasing mitochondrial membrane potential, and causing DNA fragmentation. Unlike cisplatin, the 3 l derivative was found to inhibit the nuclear localisation of NF-κB in SKRC-45 cells. It was also found to reduce the proliferation, survival and migration ability of SKRC-45 cells by downregulating COX-2/ PTGES2 cascade and MMP-2. In an in vivo tumor model, 3 l showed an anticancer effect by reducing the mean tumor mass, volume and inducing caspase-3 activation, without affecting kidney function. Further studies are needed to establish 3 l as a promising anti-cancer drug candidate.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Apoptose , Cumarínicos/farmacologia , Proliferação de Células , Linhagem Celular Tumoral
13.
Med Oncol ; 40(7): 188, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226027

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer and the main cause of cancer death globally. The use of medicinal herbs as chemotherapeutic agents in cancer treatment is receiving attention as they possess no or minimum side effects. Isorhamnetin (IRN), a flavonoid, has been under attention for its anti-inflammatory and anti-proliferative properties in a number of cancers, including colorectal, skin, and lung cancers. However, the in vivo mechanism of isorhamnetin to suppress liver cancer has yet to be explored. METHODS AND RESULT: HCC was induced by N-diethylnitrosamine (DEN) and carbon tetrachloride (CCL4) in Swiss albino mice. Isorhamnetin (100 mg/kg body weight) was given to examine its anti-tumor properties in HCC mice model. Histological analysis and liver function assays were performed to assess changes in liver anatomy. Probable molecular pathways were explored using immunoblot, qPCR, ELISA, and immunohistochemistry techniques. Isorhamnetin inhibited various pro-inflammatory cytokines to suppress cancer-inducing inflammation. Additionally, it regulated Akt and MAPKs to suppress Nrf2 signaling. Isorhamnetin activated PPAR-γ and autophagy while suppressing cell cycle progression in DEN + CCl4-administered mice. Additionally, isorhamnetin regulated various signaling pathways to suppress cell proliferation, metabolism, and epithelial-mesenchymal transition in HCC. CONCLUSION: Regulating diverse cellular signaling pathways makes isorhamnetin a better anti-cancer chemotherapeutic candidate in HCC. Importantly, the anti-TNF-α properties of isorhamnetin could prove it a valuable therapeutic agent in sorafenib-resistant HCC patients. Additionally, anti-TGF-ß properties of isorhamnetin could be utilized to reduce the EMT-inducing side effects of doxorubicin.


Assuntos
Carcinoma Hepatocelular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Inibidores do Fator de Necrose Tumoral , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Quercetina/farmacologia , Quercetina/uso terapêutico
14.
Int J Pharm ; 631: 122555, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36586636

RESUMO

Cancer is a disease of global importance. In order to mitigate conventional chemotherapy-related side effects, phytochemicals with inherent anticancer efficacy have been opted. However, the use of nanotechnology is essential to enhance the bioavailability and therapeutic efficacy of these phytochemicals. Herein, we have formulated folic acid conjugated polyacrylic acid capped mesoporous silica nanoparticles (∼47.6 nm in diameter) for pH-dependent targeted delivery of chrysin to breast cancer (MCF-7) cells. Chrysin loaded mesoporous silica nanoparticles (Chr- mSiO2@PAA/FA) have been noted to induce apoptosis in MCF-7 cells through oxidative insult and mitochondrial dysfunction with subsequent G1 arrest. Further, in tumor bearing mice, intravenous incorporation of Chr-mSiO2@PAA/FA has been noticed to enhance the anti-neoplastic effects of chrysin via tumor site-specific accumulation. Enhanced cytotoxicity of chrysin contributed towards in vivo tumor regression, restoration of normalized tissue architecture and maintenance of healthy body weight. Besides, no serious systemic toxicity was manifested in response to Chr-mSiO2@PAA/FA administration in vivo. Thus, the study evokes about the anticancer potentiality of chrysin and its increased therapeutic activity via incorporation into folic acid conjugated mesoporous silica nanoparticles, which may hold greater impact in field of future biomedical research.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Sistemas de Liberação de Medicamentos , Dióxido de Silício , Ácido Fólico , Concentração de Íons de Hidrogênio , Portadores de Fármacos , Porosidade
15.
Biochem Pharmacol ; 207: 115367, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481348

RESUMO

Often the outer leaflets of living cells bear a coat of glycosylated proteins, which primarily regulates cellular processes. Glycosylation of such proteins occurs as part of their post-translational modification. Within the endoplasmic reticulum, glycosylation enables the attachment of specific oligosaccharide moieties such as, 'glycan' to the transmembrane receptor proteins which confers precise biological information for governing the cell fate. The nature and degree of glycosylation of cell surface receptors are regulated by a bunch of glycosyl transferases and glycosidases which fine-tune attachment or detachment of glycan moieties. In classical death receptors, upregulation of glycosylation by glycosyl transferases is capable of inducing cell death in T cells, tumor cells, etc. Thus, any deregulated alternation at surface glycosylation of these death receptors can result in life-threatening disorder like cancer. In addition, transmembrane glycoproteins and lectin receptors can transduce intracellular signals for cell death execution. Exogenous interaction of lectins with glycan containing death receptors signals for cell death initiation by modulating downstream signalings. Subsequently, endogenous glycan-lectin interplay aids in the customization and implementation of the cell death program. Lastly, the glycan-lectin recognition system dictates the removal of apoptotic cells by sending accurate signals to the extracellular milieu. Since glycosylation has proven to be a biomarker of cellular death and disease progression; glycans serve as specific therapeutic targets of cancers. In this context, we are reviewing the molecular mechanisms of the glycan-lectin regulatory network as an integral part of cell death machinery in cancer to target them for successful therapeutic and clinical approaches.


Assuntos
Lectinas , Neoplasias , Humanos , Glicômica , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Polissacarídeos/metabolismo , Transferases , Receptores de Morte Celular
16.
Life Sci ; 307: 120876, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961595

RESUMO

Asiatic acid (AA), an aglycone of pentacyclic triterpene glycoside, obtained from the leaves of Centella asiatica exerts anticancer effects by inhibiting cellular proliferation and inducing apoptosis in a wide range of carcinogenic distresses. However, its chemotherapeutic efficacy is dampened by its low bioavailability. Polymeric nanoparticles (NPs) exhibit therapeutic efficacy and compliance by improving tissue penetration and lowering toxicity. Thus, to increase the therapeutic effectiveness of AA in the treatment of breast cancer, AA-loaded poly lactic-co-glycolic acid (PLGA) NPs (AA-PLGA NPs) have been formulated. The AA-PLGA NPs were characterized on the basis of their average particle size, zeta potential, electron microscopic imaging, drug loading, and entrapment efficiency. The NPs exhibited sustained drug release profile in vitro. Developed NPs exerted dose-dependent cytotoxicity to MCF-7 and MDA-MB-231 cells without damaging normal cells. The pro-oxidant and pro-apoptotic properties of AA-PLGA NPs were determined by the study of the cellular levels of SOD, CAT, GSH-GSSG, MDA, protein carbonylation, ROS, mitochondrial membrane potential, and FACS analyses on MCF-7 cells. Immunoblotting showed that AA-PLGA NPs elicited an intrinsic pathway of apoptosis in MCF-7 cells. In vivo studies on female BALB/c mice exhibited reduced volume of mammary pad tumor tissues and augmented expression of caspase-3 when administered with AA-PLGA NPs. No systemic adverse effect of AA-PLGA NPs was observed in our studies. Thus, AA-PLGA NPs can act as an efficient drug delivery system against breast cancer.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas , Neoplasias , Animais , Caspase 3 , Linhagem Celular Tumoral , Portadores de Fármacos , Feminino , Dissulfeto de Glutationa , Glicolatos , Glicosídeos , Camundongos , Tamanho da Partícula , Triterpenos Pentacíclicos/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espécies Reativas de Oxigênio , Superóxido Dismutase
17.
Toxicol Rep ; 9: 961-969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875254

RESUMO

Recently, different natural bioactive compounds have been used as anticancer agents for their various therapeutic benefits and non-toxic nature to other organs. However, they have various restrictions in preclinical and clinical studies due to their non-targeting nature and insufficient bioavailability. As a result, a zinc oxide nanoparticle (ZnO) based drug delivery medium was constructed which has good bio-compatibility and bio-degradability. It also displays cancer cell-specific drug delivery in a targeted and controlled way. In the present study, phenylboronic acid (PBA) tagged ZnO nanoparticles (ZnO-PBA) was fabricated and in the next step, chrysin (a natural bio-active molecule) was loaded to it to form the nanoconjugate (ZnO-PBA-Chry). Different characterization techniques were used to confirm the successful fabrication of ZnO-PBA-Chry. PBA-tagging to the nanoparticle helps in targeted delivery of chrysin in lung cancer cells (A549) as PBA binds with sialic acid receptors which are over-expressed on the surface of A549 cells. As ZnO dissociates in acidic pH, it shows stimuli-responsive release of chrysin in tumor microenvironment. Application of ZnO-PBA-Chry nanohybrid in lung cancer cell line A549 caused oxidative stress mediated intrinsic cell death and cell cycle arrest. ZnO-PBA-Chry downregulated MMP-2 and VE-Cadherin, thereby inhibiting metastasis and the invasive property of A549 cells.

18.
J Biochem Mol Toxicol ; 36(10): e23163, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35844137

RESUMO

The renin-angiotensin system (RAS) is an important regulator in pulmonary physiology. In our study, we identified the efficacy of melatonin to control the RAS in cadmium (Cd) induced chronic lung injury in a mouse model. Swiss albino mice exposed to CdCl2 intraperitoneally (I.P.) (1 mg/kg b.w.; 12 weeks) showed increased release of lactate dehydrogenase in bronchoalveolar lavage fluid, generating reactive oxygen species, impaired antioxidant enzymes function, and disrupted alveolar structure along with increased expression of Angiotensin-II (Ang-II) in lung tissue. Cd-induced angiotensin-converting enzyme-2-Ang-II axis imbalance triggered the onset of Ang-II induced tumour necrosis factor alpha  (TNF-α) mediated necroptosis by upregulating the signalling molecules RIP-1, RIP-3, and p-mixed lineage kinase domain-like. In an in vitro study, colocalization of Ang-II-RIP-3 molecule in Cd intoxicated L-132 cells (human alveolar epithelial cell line), as well as pretreatment of Cd exposed cells with the inhibitor's captopril (10 µM), necrostatin-1 (50 µM), and etanercept (5 µg/ml) indicated TNF-α induced necroptotic cell death via activation of the key molecule, Ang-II. Moreover, Ang-II disrupted the alveolar-capillary barrier by decreasing tight junctional proteins (zonula occludens-1 and occludin) and endothelial VE-cadherin expression. The use of human umbilical vein endothelial cells as a model of junctional protein-expressing cells showed that captopril pretreatment (25 µM) restored VE-cadherin expression in Cd-treated human umbilical vein endothelial cells. In CdCl2 intoxicated mice, melatonin pretreatment (10 mg/kg b.w.; 12 weeks, I.P.) inhibited inflammatory mediators (TNF-α, interleukin [IL]-1ß, and IL-6) release and effectively suppressed (Cd-induced) Ang-II mediated necroptotic cell death and alveolar-capillary breaching due to Cd toxicity.


Assuntos
Lesão Pulmonar , Melatonina , Edema Pulmonar , Angiotensina II/farmacologia , Animais , Antioxidantes , Cádmio/toxicidade , Captopril/farmacologia , Células Endoteliais/metabolismo , Etanercepte , Humanos , Interleucina-6/metabolismo , Lactato Desidrogenases , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Camundongos , Necroptose , Ocludina , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Life Sci ; 301: 120606, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35508254

RESUMO

Vanadium is a transitional metal having several therapeutic aspects that can be exploited for its anticancer activity. Herein, we have verified anticancer effectivity of synthesized novel water soluble mononuclear dipicolinic acid-1-allyl imidazole-based oxidovanadium (IV) complex [VOL(1-allylimz)2] with respect to anticancer effectivity of known standard platinum-based anticancer agent cisplatin. In current work, we have verified VOL(1-allylimz)2 as highly potential anticancer agent selectively against human breast cancer cells. VOL(1-allylimz)2 has been noticed to elicit dose dependent cytotoxicity in MCF-7 cell line through induction of intracellular oxidative stress and mitochondrial membrane potential. Apart from in vitro validation, in vivo studies in male Swiss Albino mice also have seen to portray dose-dependent anticancer effect of [VOL(1-allylimz)2], where indications of oxidative stress induction became prominent too. Besides, both mitochondrial as well as extra-mitochondrial apoptosis in tumor cells have been shown to be induced by [VOL(1-allylimz)2] treatment, together enforcing its anticancer potency. In contrast to cisplatin, which shows high chances of nephrotoxicity in cancer patients, [VOL(1-allylimz)2] has been found to be comparatively safe for in vivo studies.


Assuntos
Antineoplásicos , Cisplatino , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Humanos , Imidazóis/farmacologia , Masculino , Camundongos , Estresse Oxidativo , Vanádio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA