Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 46(1): 981-998, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37308768

RESUMO

Mitochondrial dysfunction is a hallmark of cellular senescence and many age-related neurodegenerative diseases. We therefore investigated the relationship between mitochondrial function in peripheral blood cells and cerebral energy metabolites in young and older sex-matched, physically and mentally healthy volunteers. Cross-sectional observational study involving 65 young (26.0 ± 0.49 years) and 65 older (71.7 ± 0.71 years) women and men recruited. Cognitive health was evaluated using established psychometric methods (MMSE, CERAD). Blood samples were collected and analyzed, and fresh peripheral blood mononuclear cells (PBMCs) were isolated. Mitochondrial respiratory complex activity was measured using a Clarke electrode. Adenosine triphosphate (ATP) and citrate synthase activity (CS) were determined by bioluminescence and photometrically. N-aspartyl-aspartate (tNAA), ATP, creatine (Cr), and phosphocreatine (PCr) were quantified in brains using 1H- and 31P-magnetic resonance spectroscopic imaging (MRSI). Levels of insulin-like growth factor 1 (IGF-1) were determined using a radio-immune assay (RIA). Complex IV activity (CIV) (- 15%) and ATP levels (- 11%) were reduced in PBMCs isolated from older participants. Serum levels of IGF-1 were significantly reduced (- 34%) in older participants. Genes involved in mitochondrial activity, antioxidant mechanisms, and autophagy were unaffected by age. tNAA levels were reduced (- 5%), Cr (+ 11%), and PCr (+ 14%) levels were increased, and ATP levels were unchanged in the brains of older participants. Markers of energy metabolism in blood cells did not significantly correlate with energy metabolites in the brain. Age-related bioenergetic changes were detected in peripheral blood cells and the brains of healthy older people. However, mitochondrial function in peripheral blood cells does not reflect energy related metabolites in the brain. While ATP levels in PBMCs may be be a valid marker for age-related mitochondrial dysfunction in humans, cerebral ATP remained constant.


Assuntos
Fator de Crescimento Insulin-Like I , Doenças Mitocondriais , Masculino , Humanos , Feminino , Idoso , Fator de Crescimento Insulin-Like I/metabolismo , Leucócitos Mononucleares/metabolismo , Estudos Transversais , Metabolismo Energético/fisiologia , Trifosfato de Adenosina/metabolismo , Encéfalo/metabolismo , Creatina/metabolismo , Doenças Mitocondriais/metabolismo
2.
Nutrients ; 11(8)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412639

RESUMO

(1) Background: Polyphenols (PP) play an important role in the prevention of non-communicable diseases and may contribute to healthy aging. To investigate the molecular and cellular aspects of PP metabolites on longevity with a focus on mitochondrial function, we applied a pre-fermented mixture of polyphenols (Rechtsregulat®, RR) to rodents and nematodes. (2) Methods: The lifespans of Navar Medical Research Institute (NMRI) mice and C. elegans were recorded. The heat-stress resistance (37 °C) of C. elegans N2 was measured using nucleic staining. Respiration and membrane potential (ΔΨm) were measured in isolated mitochondria. The energetic metabolites adenosine triphosphate (ATP), lactate, and pyruvate were determined in lysates. Expression levels of longevity related genes were determined using quantitative real time polymerase chain reaction (qRT-PCR). Phenolic compounds were identified using ultra high performance liquid chromatography-diode array detection-Iontrap-multiple stage mass spectrometry (UHPLC-DAD-Iontrap-MSn). (3) Results: Several phenolic metabolites including protocatechuic acid (PCA) were identified in RR. Feeding of mice with RR resulted in a significantly increased lifespan. Heat-stress resistance (RR *** p = 0.0006; PCA **** p < 0.0001), median lifespan (NMRI: RR ** p = 0.0035; C. elegans RR * p = 0.0279; PCA **** p < 0.0001), and activity of mitochondrial respiratory chain complexes (RR *-** p = 0.0237 - 0.0052; PCA * p = 0.019 - 0.0208) of C. elegans were significantly increased after incubation with RR (10%) or PCA (780 µM). PCA significantly improved nematodes ΔΨm (* p = 0.02058) and ATP levels (* p = 0.029). RR significantly up-regulated lactate levels, indicating enhanced glycolysis. The expression levels of longevity related genes daf-16, sir-2.1, and skn-1 were significantly upregulated after PCA, and partially after RR administration. (4) Conclusion: Phenolic metabolites such as PCA have the potential to enhance health and lifespan and mitochondrial function, and thus may contribute to healthy aging.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Caenorhabditis elegans/metabolismo , Metabolismo Energético , Envelhecimento Saudável , Longevidade , Mitocôndrias/metabolismo , Polifenóis/metabolismo , Trifosfato de Adenosina/metabolismo , Ração Animal , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fermentação , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Envelhecimento Saudável/genética , Resposta ao Choque Térmico , Hidrolases/genética , Hidrolases/metabolismo , Ácido Láctico/metabolismo , Longevidade/genética , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Valor Nutritivo , Sirtuínas/genética , Sirtuínas/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA