Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 143(13): 1293-1309, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38142410

RESUMO

ABSTRACT: Although it is caused by a single-nucleotide mutation in the ß-globin gene, sickle cell anemia (SCA) is a systemic disease with complex, incompletely elucidated pathologies. The mononuclear phagocyte system plays critical roles in SCA pathophysiology. However, how heterogeneous populations of hepatic macrophages contribute to SCA remains unclear. Using a combination of single-cell RNA sequencing and spatial transcriptomics via multiplexed error-robust fluorescence in situ hybridization, we identified distinct macrophage populations with diversified origins and biological functions in SCA mouse liver. We previously found that administering the von Willebrand factor (VWF)-cleaving protease ADAMTS13 alleviated vaso-occlusive episode in mice with SCA. Here, we discovered that the ADAMTS13-cleaved VWF was cleared from the circulation by a Clec4f+Marcohigh macrophage subset in a desialylation-dependent manner in the liver. In addition, sickle erythrocytes were phagocytized predominantly by Clec4f+Marcohigh macrophages. Depletion of macrophages not only abolished the protective effect of ADAMTS13 but exacerbated vaso-occlusive episode in mice with SCA. Furthermore, promoting macrophage-mediated VWF clearance reduced vaso-occlusion in SCA mice. Our study demonstrates that hepatic macrophages are important in the pathogenesis of SCA, and efficient clearance of VWF by hepatic macrophages is critical for the protective effect of ADAMTS13 in SCA mice.


Assuntos
Anemia Falciforme , Doenças Vasculares , Camundongos , Animais , Fator de von Willebrand/genética , Hibridização in Situ Fluorescente , Anemia Falciforme/patologia , Macrófagos/patologia , Proteína ADAMTS13/genética
2.
Circ Res ; 133(6): 463-480, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555328

RESUMO

BACKGROUND: Cardiac valve disease is observed in 2.5% of the general population and 10% of the elderly people. Effective pharmacological treatments are currently not available, and patients with severe cardiac valve disease require surgery. PROX1 (prospero-related homeobox transcription factor 1) and FOXC2 (Forkhead box C2 transcription factor) are transcription factors that are required for the development of lymphatic and venous valves. We found that PROX1 and FOXC2 are expressed in a subset of valvular endothelial cells (VECs) that are located on the downstream (fibrosa) side of cardiac valves. Whether PROX1 and FOXC2 regulate cardiac valve development and disease is not known. METHODS: We used histology, electron microscopy, and echocardiography to investigate the structure and functioning of heart valves from Prox1ΔVEC mice in which Prox1 was conditionally deleted from VECs. Isolated valve endothelial cells and valve interstitial cells were used to identify the molecular mechanisms in vitro, which were tested in vivo by RNAScope, additional mouse models, and pharmacological approaches. The significance of our findings was tested by evaluation of human samples of mitral valve prolapse and aortic valve insufficiency. RESULTS: Histological analysis revealed that the aortic and mitral valves of Prox1ΔVEC mice become progressively thick and myxomatous. Echocardiography revealed that the aortic valves of Prox1ΔVEC mice are stenotic. FOXC2 was downregulated and PDGF-B (platelet-derived growth factor-B) was upregulated in the VECs of Prox1ΔVEC mice. Conditional knockdown of FOXC2 and conditional overexpression of PDGF-B in VECs recapitulated the phenotype of Prox1ΔVEC mice. PDGF-B was also increased in mice lacking FOXC2 and in human mitral valve prolapse and insufficient aortic valve samples. Pharmacological inhibition of PDGF-B signaling with imatinib partially ameliorated the valve defects of Prox1ΔVEC mice. CONCLUSIONS: PROX1 antagonizes PDGF-B signaling partially via FOXC2 to maintain the extracellular matrix composition and prevent myxomatous degeneration of cardiac valves.


Assuntos
Doenças das Valvas Cardíacas , Prolapso da Valva Mitral , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/prevenção & controle , Doenças das Valvas Cardíacas/metabolismo , Valva Mitral/metabolismo , Prolapso da Valva Mitral/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo
3.
Blood ; 138(2): 178-189, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33598692

RESUMO

Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model of lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. Here we used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII in this baboon model. Compared with untreated control animals, repeated 5C12 administration before and at 8 and 24 hours after bacterial challenge prevented the dramatic increase in circulating complexes of contact system enzymes FXIIa, FXIa, and kallikrein with antithrombin or C1 inhibitor, and prevented cleavage and consumption of high-molecular-weight kininogen. Activation of several coagulation factors and fibrinolytic enzymes was also prevented. D-dimer levels exhibited a profound increase in the untreated animals but not in the treated animals. The antibody also blocked the increase in plasma biomarkers of inflammation and cell damage, including tumor necrosis factor, interleukin (IL)-1ß, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, nucleosomes, and myeloperoxidase. Based on clinical presentation and circulating biomarkers, inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms and were asymptomatic at day 7, whereas untreated control animals suffered irreversible multiorgan failure and had to be euthanized within 2 days after the bacterial challenge. This study confirms and extends our previous finding that at least 2 enzymes of the contact activation complex, FXIa and FXIIa, play critical roles in the development of an acute and terminal inflammatory response in baboons challenged with heat-inactivated S aureus.


Assuntos
Fator XII/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/microbiologia , Staphylococcus aureus/fisiologia , Animais , Anticorpos/uso terapêutico , Transtornos da Coagulação Sanguínea/complicações , Transtornos da Coagulação Sanguínea/imunologia , Transtornos da Coagulação Sanguínea/microbiologia , Plaquetas/metabolismo , Microambiente Celular , Ativação do Complemento , Fator XII/imunologia , Feminino , Fibrinogênio/metabolismo , Temperatura Alta , Inflamação/complicações , Inflamação/patologia , Masculino , Insuficiência de Múltiplos Órgãos/imunologia , Papio , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Análise de Sobrevida
4.
J Thromb Haemost ; 19(2): 429-443, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33174372

RESUMO

BACKGROUND: During sepsis, gram-negative bacteria induce robust inflammation primarily via lipopolysacharride (LPS) signaling through TLR4, a process that involves the glycosylphosphatidylinositol (GPI)-anchored receptor CD14 transferring LPS to the Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) complex. Sepsis also triggers the onset of disseminated intravascular coagulation and consumptive coagulopathy. OBJECTIVES: We investigated the effect of CD14 blockade on sepsis-induced coagulopathy, inflammation, organ dysfunction, and mortality. METHODS: We used a baboon model of lethal Escherichia (E) coli sepsis to study two experimental groups (n = 5): (a) E coli challenge; (b) E coli challenge plus anti-CD14 (23G4) inhibitory antibody administered as an intravenous bolus 30 minutes before the E coli. RESULTS: Following anti-CD14 treatment, two animals reached the 7-day end-point survivor criteria, while three animals had a significantly prolonged survival as compared to the non-treated animals that developed multiple organ failure and died within 30 hours. Anti-CD14 reduced the activation of coagulation through inhibition of tissue factor-dependent pathway, especially in the survivors, and enhanced the fibrinolysis due to strong inhibition of plasminogen activator inhibitor 1. The treatment prevented the robust complement activation induced by E coli, as shown by significantly decreased C3b, C5a, and sC5b-9. Vital signs, organ function biomarkers, bacteria clearance, and leukocyte and fibrinogen consumption were all improved at varying levels. Anti-CD14 reduced neutrophil activation, cell death, LPS levels, and pro-inflammatory cytokines (tumor necrosis factor, interleukin (IL)-6, IL-1ß, IL-8, interferon gamma, monocyte chemoattractant protein-1), more significantly in the survivors than non-surviving animals. CONCLUSIONS: Our results highlight the crosstalk between coagulation/fibrinolysis, inflammation, and complement systems and suggest a protective role of anti-CD14 treatment in E coli sepsis.


Assuntos
Escherichia coli , Sepse , Animais , Inflamação , Receptores de Lipopolissacarídeos , Papio , Sepse/tratamento farmacológico
5.
Arterioscler Thromb Vasc Biol ; 38(8): 1748-1760, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30354195

RESUMO

Objective- Terminal complications of bacterial sepsis include development of disseminated intravascular consumptive coagulopathy. Bacterial constituents, including long-chain polyphosphates (polyP), have been shown to activate the contact pathway of coagulation in plasma. Recent work shows that activation of the contact pathway in flowing whole blood promotes thrombin generation and platelet activation and consumption distal to thrombus formation ex vivo and in vivo. Here, we sought to determine whether presence of long-chain polyP or bacteria in the bloodstream promotes platelet activation and consumption in a coagulation factor (F)XII-dependent manner. Approach and Results- Long-chain polyP promoted platelet P-selectin expression, microaggregate formation, and platelet consumption in flowing whole blood in a contact activation pathway-dependent manner. Moreover, long-chain polyP promoted local fibrin formation on collagen under shear flow in a FXI-dependent manner. Distal to the site of thrombus formation, platelet consumption was dramatically enhanced in the presence of long-chain polyP in the blood flow in a FXI- and FXII-dependent manner. In a murine model, long-chain polyP promoted platelet deposition and fibrin generation in lungs in a FXII-dependent manner. In a nonhuman primate model of bacterial sepsis, pre-treatment of animals with an antibody blocking FXI activation by FXIIa reduced lethal dose100 Staphylococcus aureus-induced platelet and fibrinogen consumption. Conclusions- This study demonstrates that bacterial-type long-chain polyP promotes platelet activation in a FXII-dependent manner in flowing blood, which may contribute to sepsis-associated thrombotic processes, consumptive coagulopathy, and thrombocytopenia.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Fator XII/metabolismo , Fator XIIa/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Polifosfatos/toxicidade , Trombose/induzido quimicamente , Animais , Plaquetas/metabolismo , Modelos Animais de Doenças , Fator XII/genética , Fator XIIa/genética , Feminino , Fibrina/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Papio ursinus , Pré-Calicreína/genética , Pré-Calicreína/metabolismo , Embolia Pulmonar/sangue , Embolia Pulmonar/induzido quimicamente , Embolia Pulmonar/genética , Sepse/sangue , Sepse/microbiologia , Transdução de Sinais/efeitos dos fármacos , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/microbiologia , Trombose/sangue , Trombose/genética , Calicreínas Teciduais/genética , Calicreínas Teciduais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA