RESUMO
Chronic low-grade inflammation plays an important role in the pathogenesis of insulin resistance. In the current study, we tested the effects of salsalate, a non-steroidal anti-inflammatory drug, in an animal model of inflammation and metabolic syndrome using spontaneously hypertensive rats (SHR) that transgenically express human C-reactive protein (SHR-CRP rats). We treated 15-month-old male transgenic SHR-CRP rats and nontransgenic SHR with salsalate (200 mg/kg/day) mixed as part of a standard diet for 4 weeks. A corresponding untreated control group of male transgenic SHR-CRP and SHR rats were fed a standard diet without salsalate. In the SHR-CRP transgenic strain, salsalate treatment decreased circulating concentrations of the inflammatory markers TNF-α and MCP-1, reduced oxidative stress in the liver and kidney, increased sensitivity of skeletal muscles to insulin action and improved tolerance to glucose. In SHR controls with no CRP-induced inflammation, salsalate treatment reduced body weight, decreased concentrations of serum free fatty acids and total and HDL cholesterol and increased palmitate oxidation and incorporation in brown adipose tissue. Salsalate regulated inflammation by affecting the expression of genes from MAPK signalling and NOD-like receptor signalling pathways and lipid metabolism by affecting hepatic expression of genes that favour lipid oxidation from PPAR-α signalling pathways. These findings suggest that salsalate has metabolic effects beyond suppressing inflammation.
Assuntos
Proteína C-Reativa/biossíntese , Hipertensão/tratamento farmacológico , Inflamação/tratamento farmacológico , Salicilatos/administração & dosagem , Tecido Adiposo Marrom/metabolismo , Animais , Animais Geneticamente Modificados/genética , Proteína C-Reativa/genética , Ácidos Graxos não Esterificados/metabolismo , Humanos , Hipertensão/genética , Hipertensão/patologia , Inflamação/genética , Inflamação/patologia , Resistência à Insulina/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Proteínas NLR/biossíntese , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/biossíntese , Ratos , Fator de Necrose Tumoral alfa/biossínteseRESUMO
The spontaneously hypertensive rat (SHR), one of the most widely used model of essential hypertension, is predisposed to left ventricular hypertrophy, myocardial fibrosis, and metabolic disturbances. Recently, quantitative trait loci influencing blood pressure, left ventricular mass, and heart interstitial fibrosis were genetically isolated within a minimal congenic subline that contains only 7 genes, including mutant Plzf (promyelocytic leukemia zinc finger) candidate gene. To identify Plzf as a quantitative trait gene, we targeted Plzf in the SHR using the transcription activator-like effector nuclease technique and obtained SHR line harboring targeted Plzf gene with a premature stop codon. Because the Plzf targeted allele is semilethal, morphologically normal heterozygous rats were used for metabolic and hemodynamic analyses. SHR-Plzf+/- heterozygotes versus SHR wild-type controls exhibited reduced body weight and relative weight of epididymal fat, lower serum and liver triglycerides and cholesterol, and better glucose tolerance. In addition, SHR-Plzf+/- rats exhibited significantly increased sensitivity of adipose and muscle tissue to insulin action when compared with wild-type controls. Blood pressure was comparable in SHR versus SHR-Plzf+/-; however, there was significant amelioration of cardiomyocyte hypertrophy and cardiac fibrosis in SHR-Plzf+/- rats. Gene expression profiles in the liver and expression of selected genes in the heart revealed differentially expressed genes that play a role in metabolic pathways, PPAR (peroxisome proliferator-activated receptor) signaling, and cell cycle regulation. These results provide evidence for an important role of Plzf in regulation of metabolic and cardiac traits in the rat and suggest a cross talk between cell cycle regulators, metabolism, cardiac hypertrophy, and fibrosis.
Assuntos
Perfilação da Expressão Gênica , Hipertensão/genética , Hipertensão/patologia , Hipertrofia Ventricular Esquerda/genética , Fatores de Transcrição Kruppel-Like/genética , Alelos , Análise de Variância , Animais , Determinação da Pressão Arterial , Western Blotting , Células Cultivadas , Regulação para Baixo , Hipertensão Essencial , Fibrose/genética , Hipertrofia Ventricular Esquerda/fisiopatologia , Metabolismo dos Lipídeos/genética , Masculino , Miócitos Cardíacos/metabolismo , Fenótipo , Proteína com Dedos de Zinco da Leucemia Promielocítica , Locos de Características Quantitativas , Ratos , Ratos Endogâmicos SHR , Reação em Cadeia da Polimerase em Tempo Real/métodosRESUMO
Recently, it has been found that spontaneous mutation Lx (polydactyly-luxate syndrome) in the rat is determined by deletion of a conserved intronic sequence of the Plzf (Promyelocytic leukemia zinc finger protein) gene. In addition, Plzf is a prominent candidate gene for quantitative trait loci (QTLs) associated with cardiac hypertrophy and fibrosis in the spontaneously hypertensive rat (SHR). In the current study, we tested the effects of Plzf gene targeting in the SHR using TALENs (transcription activator-like effector nucleases). SHR ova were microinjected with constructs pTAL438/439 coding for a sequence-specific endonuclease that binds to target sequence in the first coding exon of the Plzf gene. Out of 43 animals born after microinjection, we detected a single male founder. Sequence analysis revealed a deletion of G that resulted in frame shift mutation starting in codon 31 and causing a premature stop codon at position of amino acid 58. The Plzftm1Ipcv allele is semi-lethal since approximately 95% of newborn homozygous animals died perinatally. All homozygous animals exhibited manifestations of a caudal regression syndrome including tail anomalies and serious size reduction and deformities of long bones, and oligo- or polydactyly on the hindlimbs. The heterozygous animals only exhibited the tail anomalies. Impaired development of the urinary tract was also revealed: one homozygous and one heterozygous rat exhibited a vesico-ureteric reflux with enormous dilatation of ureters and renal pelvis. In the homozygote, this was combined with a hypoplastic kidney. These results provide evidence for the important role of Plzf gene during development of the caudal part of a body-column vertebrae, hindlimbs and urinary system in the rat.
Assuntos
Proteínas de Ligação a DNA/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/veterinária , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Éxons , Mutação da Fase de Leitura , Marcação de Genes , Genótipo , Heterozigoto , Homozigoto , Masculino , Polidactilia/genética , Polidactilia/patologia , Polidactilia/veterinária , Proteína com Dedos de Zinco da Leucemia Promielocítica , Ligação Proteica , Locos de Características Quantitativas , Ratos , Ratos Endogâmicos SHR , Cauda/anormalidades , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genéticaRESUMO
Resistin has been originally identified as an adipokine that links obesity to insulin resistance in mice. In our previous studies in spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin (Retn) transgene specifically in adipose tissue (SHR-Retn), we have observed an increased lipolysis and serum free fatty acids, ectopic fat accumulation in muscles, and insulin resistance. Recently, brown adipose tissue (BAT) has been suggested to play an important role in the pathogenesis of metabolic disturbances. In the current study, we have analyzed autocrine effects of transgenic resistin on BAT glucose and lipid metabolism and mitochondrial function in the SHR-Retn vs. nontransgenic SHR controls. We observed that interscapular BAT isolated from SHR-Retn transgenic rats compared with SHR controls showed a lower relative weight (0.71 ± 0.05 vs. 0.91 ± 0.08 g/100 g body wt, P < 0.05), significantly reduced both basal and insulin stimulated incorporation of palmitate into BAT lipids (658 ± 50 vs. 856 ± 45 and 864 ± 47 vs. 1,086 ± 35 nmol/g/2 h, P ≤ 0.01, respectively), and significantly decreased palmitate oxidation (37.6 ± 4.5 vs. 57 ± 4.1 nmol/g/2 h, P = 0.007) and glucose oxidation (277 ± 34 vs. 458 ± 38 nmol/g/2 h, P = 0.001). In addition, in vivo microPET imaging revealed significantly reduced (18)F-FDG uptake in BAT induced by exposure to cold in SHR-Retn vs. control SHR (232 ± 19 vs. 334 ± 22 kBq/ml, P < 0.05). Gene expression profiles in BAT identified differentially expressed genes involved in skeletal muscle and connective tissue development, inflammation and MAPK and insulin signaling. These results provide evidence that autocrine effects of resistin attenuate differentiation and activity of BAT and thus may play a role in the pathogenesis of insulin resistance in the rat.
Assuntos
Tecido Adiposo Marrom/metabolismo , Comunicação Autócrina/fisiologia , Glucose/metabolismo , Palmitatos/metabolismo , Resistina/genética , Tecido Adiposo Marrom/fisiologia , Animais , Comunicação Autócrina/genética , Ácidos Graxos não Esterificados/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/genética , Mitocôndrias/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Oxirredução , Ratos , Ratos Endogâmicos SHR , Ratos Transgênicos , Transcriptoma/genéticaRESUMO
Metabolism of homocysteine and other sulfur amino acids is closely associated with metabolism of folates. In this study, we analyzed the possible role of folates and sulfur amino acids in the development of features of the metabolic syndrome in the BXH/HXB recombinant inbred strains derived from the spontaneously hypertensive rat (SHR) and Brown Norway progenitors. We mapped a quantitative trait locus for cysteine concentrations to a region of chromosome 1 that contains a cis-acting expression quantitative trait locus regulating mRNA levels of folate receptor 1 (Folr1) in the kidney. Sequence analysis revealed a deletion variant in the Folr1 promoter region of the SHR. Transfection studies demonstrated that the SHR-promoter region of Folr1 is less effective in driving luciferase reporter gene expression than the Brown Norway promoter region of Folr1. Results in the SHR.BN-chr.1 congenic strain confirmed that the SHR variant in Folr1 cosegregates with markedly reduced renal expression of Folr1 and renal folate reabsorption, decreased serum levels of folate, increased serum levels of cysteine and homocysteine, increased adiposity, ectopic fat accumulation in liver and muscle, reduced muscle insulin sensitivity, and increased blood pressure. Transgenic rescue experiments performed by expressing a Folr1 transgene in the SHR ameliorated most of the metabolic disturbances. These findings are consistent with the hypothesis that inherited variation in the expression of Folr1 in the kidney influences the development of the metabolic syndrome and constitutes a previously unrecognized genetic mechanism that may contribute to increased risk for diabetes mellitus and cardiovascular disease.
Assuntos
Receptor 1 de Folato/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Hipertensão/complicações , Rim/metabolismo , Síndrome Metabólica/genética , RNA/genética , Animais , Pressão Sanguínea/fisiologia , Receptor 1 de Folato/biossíntese , Variação Genética , Hipertensão/genética , Hipertensão/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos SHR , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Common inbred strains of the laboratory rat can be divided into four major mitochondrial DNA (mtDNA) haplotype groups represented by the BN, F344, LEW, and SHR strains. In the current study, we investigated the metabolic and hemodynamic effects of the SHR vs. F344 mtDNA by comparing the SHR vs. SHR-mt(F344) conplastic strains that are genetically identical except for their mitochondrial genomes. Altogether 13 amino acid substitutions in protein coding genes, seven single nucleotide polymorphisms in tRNA genes, and 12 single nucleotide changes in rRNA genes were detected in F344 mtDNA compared with SHR mtDNA. Analysis of oxidative phosphorylation system (OXPHOS) in heart left ventricles (LV), muscle, and liver revealed reduced activity and content of several respiratory chain complexes in SHR-mt(F344) conplastic rats compared with the SHR strain. Lower function of OXPHOS in LV of conplastic rats was associated with significantly increased relative ventricular mass and reduced fractional shortening that was independent of blood pressure. In addition, conplastic rats exhibited reduced sensitivity of skeletal muscles to insulin action and impaired glucose tolerance. These results provide evidence that inherited alterations in mitochondrial genome, in the absence of variation in the nuclear genome and other confounding factors, predispose to insulin resistance, cardiac hypertrophy and systolic dysfunction.
Assuntos
Cardiomegalia/genética , Cardiomegalia/fisiopatologia , DNA Mitocondrial/genética , Resistência à Insulina/genética , Fosforilação Oxidativa , Sístole , Nucleotídeos de Adenina/metabolismo , Animais , Sequência de Bases , Pressão Sanguínea/efeitos dos fármacos , Eletrocardiografia , Transporte de Elétrons/efeitos dos fármacos , Dosagem de Genes , Genes Mitocondriais , Glucose/metabolismo , Teste de Tolerância a Glucose , Haplótipos/genética , Insulina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Dados de Sequência Molecular , Tamanho do Órgão/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Fenótipo , RNA de Transferência/genética , Ratos Endogâmicos F344 , Ratos Endogâmicos SHR , Análise de Sequência de DNA , Sístole/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacosRESUMO
AIMS: Statins have antiinflammatory effects and are known to decrease risk of cardiovascular events and to reduce serum levels of C-reactive protein (CRP), a widely studied biomarker and potential mediator of inflammation and heart disease. However, it is unclear whether statins can block pro-inflammatory effects of human CRP independent of their ability to reduce serum levels of human CRP. Here, we investigated whether rosuvastatin could block pro-inflammatory effects of human CRP without reducing circulating levels of human CRP. METHODS AND RESULTS: We studied the antiinflammatory effects of rosuvastatin in spontaneously hypertensive rats (SHR) transgenically expressing human CRP (CRP-transgenic SHR) and in nontransgenic SHR lacking human CRP (nontransgenic SHR). The CRP-transgenic SHR is characterized by increased serum levels of human CRP and inflammation. In the CRP-transgenic strain, we found that rosuvastatin treatment decreased circulating levels of inflammatory response markers IL6 and TNFα without decreasing circulating levels of human CRP. In contrast, in the nontransgenic strain lacking human CRP, rosuvastatin treatment had little or no effect on IL6 and TNFα levels. Rosuvastatin also reduced cardiac inflammation and oxidative tissue damage, reduced epididymal fat mass, and improved adipose tissue lipolysis much more in the CRP-transgenic strain than in the nontransgenic strain. CONCLUSION: Rosuvastatin can protect against pro-inflammatory effects of human CRP in a manner that is not dependent on achieving a reduction in circulating levels of human CRP.
Assuntos
Anti-Inflamatórios/farmacologia , Proteína C-Reativa/metabolismo , Fluorbenzenos/farmacologia , Mediadores da Inflamação/sangue , Inflamação/prevenção & controle , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Animais , Proteína C-Reativa/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Interleucina-6/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Ratos Transgênicos , Rosuvastatina Cálcica , Fator de Necrose Tumoral alfa/sangueRESUMO
BACKGROUND: The spontaneously hypertensive rat (SHR) is the most widely used model of essential hypertension and is susceptible to left ventricular hypertrophy (LVH) and myocardial fibrosis. Recently, a quantitative trait locus (QTL) that influences heart interstitial fibrosis was mapped to chromosome 8. Our aim was to dissect the genetic basis of this QTL(s) predisposing SHR to hypertension, LVH, and interstitial fibrosis. METHODS: Hemodynamic and histomorphometric analyses were performed in genetically defined SHR.PD-chr.8 minimal congenic strain (PD5 subline) rats. RESULTS: The differential segment, genetically isolated within the PD5 subline, spans 788kb and contains 7 genes, including the promyelocytic leukemia zinc finger (Plzf) gene that has been implicated in hypertrophy and cardiac fibrosis. Mutant Plzf allele contains a 2,964-bp deletion in intron 2. The PD5 congenic strain, when compared with the SHR, showed significantly reduced systolic blood pressure by approximately 15mm Hg (P = 0.002), amelioration of LVH (0.23±0.02 vs. 0.39±0.02g/100g body weight; P < 0.00001), and reduced interstitial fibrosis (17,478±1,035 vs. 41,530±3,499 µm(2); P < 0.0001). The extent of amelioration of LVH and interstitial fibrosis was disproportionate to blood pressure decrease in congenic rats, suggesting an important role for genetic factors. Cardiac expression of Plzf was significantly reduced in prehypertensive (8 and 21 days) congenic animals compared with controls. CONCLUSIONS: These results provide compelling evidence of a significant role for genetic factors in regulating blood pressure, LVH, and cardiac fibrosis and identify mutant Plzf as a prominent candidate gene.
Assuntos
Proteínas de Ligação a DNA/genética , Hipertensão/genética , Hipertrofia Ventricular Esquerda/genética , Miocárdio/patologia , Animais , Animais Congênicos , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Hemodinâmica/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Fenótipo , Proteína com Dedos de Zinco da Leucemia Promielocítica , Locos de Características Quantitativas , Ratos , Ratos Endogâmicos SHR , Fatores de TempoRESUMO
Dysfunction or abnormalities in the regulation of fatty acid translocase Cd36, a multifunctional membrane protein participating in uptake of long-chain fatty acids, has been linked to the development of heart diseases both in animals and humans. We have previously shown that the Cd36 transgenic spontaneously hypertensive rat (SHR-Cd36), with a wild type Cd36, has higher susceptibility to ischemic ventricular arrhythmias when compared to spontaneously hypertensive rat (SHR) carrying a mutant Cd36 gene, which may have been related to increased ß-adrenergic responsiveness of these animals (Neckar et al., 2012 Physiol. Genomics 44:173-182). The present study aimed to determine whether the insertion of the wild type Cd36 into SHR would affect the function of myocardial G protein-regulated adenylyl cyclase (AC) signaling. ß-Adrenergic receptors (ß-ARs) were characterized by radioligand-binding experiments and the expression of selected G protein subunits, AC, and protein kinase A (PKA) was determined by RT-PCR and Western blot analyses. There was no significant difference in the amount of trimeric G proteins, but the number of ß-ARs was higher (by about 35 %) in myocardial preparations from SHR-Cd36 as compared to SHR. Besides that, transgenic rats expressed increased amount (by about 20 %) of the dominant myocardial isoforms AC5/6 and contained higher levels of both nonphosphorylated (by 11 %) and phosphorylated (by 45 %) PKA. Differently stimulated AC activity in SHR-Cd36 significantly exceeded (by about 18-30 %) the enzyme activity in SHR. Changes at the molecular level were reflected by higher contractile responses to stimulation by the adrenergic agonist dobutamine. In summary, it can be concluded that the increased susceptibility to ischemic arrhythmias of SHR-Cd36 is attributable to upregulation of some components of the ß-AR signaling pathway, which leads to enhanced sensitization of AC and increased cardiac adrenergic responsiveness.
Assuntos
Adenilil Ciclases/metabolismo , Antígenos CD36/genética , Miocárdio/metabolismo , Transdução de Sinais , Adenilil Ciclases/genética , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Antígenos CD36/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dobutamina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Contração Miocárdica , Ratos , Ratos Endogâmicos SHR , Ratos Transgênicos , Receptores Adrenérgicos beta/metabolismoRESUMO
Common inbred strains of the laboratory rat can be divided into four different mitochondrial DNA haplotype groups represented by the SHR, BN, LEW, and F344 strains. In the current study, we investigated the metabolic and hemodynamic effects of the SHR vs. LEW mitochondrial genomes by comparing the SHR to a new SHR conplastic strain, SHR-mt(LEW); these strains are genetically identical except for their mitochondrial genomes. Complete mitochondrial DNA (mtDNA) sequence analysis comparing the SHR and LEW strains revealed gene variants encoding amino acid substitutions limited to a single mitochondrial enzyme complex, NADH dehydrogenase (complex I), affecting subunits 2, 4, and 5. Two of the variants in the mt-Nd4 subunit gene are located close to variants known to be associated with exercise intolerance and diabetes mellitus in humans. No variants were found in tRNA or rRNA genes. These variants in mt-Nd2, mt-Nd4, and mt-Nd5 in the SHR-mt(LEW) conplastic strain were linked to reductions in oxidative and nonoxidative glucose metabolism in skeletal muscle. In addition, SHR-mt(LEW) conplastic rats showed increased serum nonesterified fatty acid levels and resistance to insulin stimulated incorporation of glucose into adipose tissue lipids. These results provide evidence that inherited variation in mitochondrial genes encoding respiratory chain complex I subunits, in the absence of variation in the nuclear genome and other confounding factors, can influence glucose and lipid metabolism when expressed on the nuclear genetic background of the SHR strain.
Assuntos
DNA Mitocondrial/genética , Variação Genética , Hipertensão/genética , Resistência à Insulina/genética , NADH Desidrogenase/genética , Fosforilação Oxidativa , Nucleotídeos de Adenina/metabolismo , Tecido Adiposo/enzimologia , Sequência de Aminoácidos , Animais , Glicemia/metabolismo , Pressão Sanguínea , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/sangue , Frutose/administração & dosagem , Frutose/metabolismo , Haplótipos , Frequência Cardíaca , Hereditariedade , Hipertensão/sangue , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Insulina/sangue , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , NADH Desidrogenase/metabolismo , Fenótipo , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Ratos Endogâmicos SHRRESUMO
Increased circulating levels of resistin have been proposed as a possible link between obesity and insulin resistance; however, many of the potential metabolic effects of resistin remain to be investigated, including systemic versus local resistin action. We investigated potential autocrine effects of resistin on lipid and glucose metabolism in 2- and 16-mo-old transgenic spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin under control of the aP2 promoter. To search for possible molecular mechanisms, we compared gene expression profiles in adipose tissue in 6-wk-old transgenic SHR versus control rats, before development of insulin resistance, by digital transcriptional profiling using high-throughput sequencing. Both young and old transgenic rats showed moderate expression of the resistin transgene in adipose tissue but had serum resistin levels similar to control SHR and undetectable levels of transgenic resistin in the circulation. Young transgenic rats exhibited mild glucose intolerance. In contrast, older transgenic rats displayed marked glucose intolerance in association with near total resistance of adipose tissue to insulin-stimulated glucose incorporation into lipids (6 ± 2 vs. 77 ± 19 nmol glucose·g(-1)·2 h(-1), P < 0.00001). Ingenuity Pathway Analysis of differentially expressed genes revealed calcium signaling, Nuclear factor-erythroid 2-related factor-2 (NRF2)-mediated oxidative stress response, and actin cytoskeletal signaling canonical pathways as those most significantly affected. Analysis using DAVID software revealed oxidative phosphorylation, glutathione metabolism, pyruvate metabolism, and peroxisome proliferator-activated receptor (PPAR) signaling as top Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. These results suggest that with increasing age autocrine effects of resistin in fat tissue may predispose to diabetes in part by impairing insulin action in adipose tissue.