Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(7): e0254596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34320000

RESUMO

Providing treatment sensitivity stratification at the time of cancer diagnosis allows better allocation of patients to alternative treatment options. Despite many clinical and biological risk markers having been associated with variable survival in cancer, assessing the interplay of these markers through Machine Learning (ML) algorithms still remains to be fully explored. Here, we present a Multi Learning Training approach (MuLT) combining supervised, unsupervised and self-supervised learning algorithms, to examine the predictive value of heterogeneous treatment outcomes for Multiple Myeloma (MM). We show that gene expression values improve the treatment sensitivity prediction and recapitulates genetic abnormalities detected by Fluorescence in situ hybridization (FISH) testing. MuLT performance was assessed by cross-validation experiments, in which it predicted treatment sensitivity with 68.70% of AUC. Finally, simulations showed numerical evidences that in average 17.07% of patients could get better response to a different treatment at the first line.


Assuntos
Antineoplásicos/uso terapêutico , Aprendizado de Máquina , Mieloma Múltiplo/tratamento farmacológico , Área Sob a Curva , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Mieloma Múltiplo/genética , Mieloma Múltiplo/mortalidade , Curva ROC , Taxa de Sobrevida , Resultado do Tratamento
2.
Cancers (Basel) ; 12(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316873

RESUMO

DNA repair deficiency (DRD) is an important driver of carcinogenesis and an efficient target for anti-tumor therapies to improve patient survival. Thus, detection of DRD in tumors is paramount. Currently, determination of DRD in tumors is dependent on wet-lab assays. Here we describe an efficient machine learning algorithm which can predict DRD from histopathological images. The utility of this algorithm is demonstrated with data obtained from 1445 cancer patients. Our method performs rather well when trained on breast cancer specimens with homologous recombination deficiency (HRD), AUC (area under curve) = 0.80. Results for an independent breast cancer cohort achieved an AUC = 0.70. The utility of our method was further shown by considering the detection of mismatch repair deficiency (MMRD) in gastric cancer, yielding an AUC = 0.81. Our results demonstrate the capacity of our learning-base system as a low-cost tool for DRD detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA