Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Protein Pept Sci ; 25(1): 12-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37653631

RESUMO

Glioblastoma multiforme (GBM) is the most common type of cancer that affects the central nervous system (CNS). It currently accounts for about 2% of diagnosed malignant tumors worldwide, with 296,000 new cases reported per year. The first-choice treatment consists of surgical resection, radiotherapy, and adjuvant chemotherapy, which increases patients' survival by 15 months. New clinical and pre-clinical research aims to improve this prognosis by proposing the search for new drugs that effectively eliminate cancer cells, circumventing problems such as resistance to treatment. One of the promising therapeutic strategies in the treatment of GBM is the inhibition of the phosphatidylinositol 3-kinase (PI3K) pathway, which is closely related to the process of tumor carcinogenesis. This review sought to address the main scientific studies of synthetic or natural drug prototypes that target specific therapy co-directed via the PI3K pathway, against human glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia
2.
Curr Top Med Chem ; 22(18): 1485-1500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35086449

RESUMO

Influenza viruses (INFV), the Orthomyxoviridae family, are mainly transmitted among humans via aerosols or droplets from the respiratory secretions. However, fomites could be a potential transmission pathway. Annually, seasonal INFV infections account for 290-650 thousand deaths worldwide. Currently, there are two classes of approved drugs to treat INFV infections, being neuraminidase (NA) inhibitors and blockers of matrix-2 (M2) ion channel. However, cases of resistance have been observed for both chemical classes, reducing the efficacy of treatment. The emergence of influenza outbreaks and pandemics calls for new antiviral molecules that are more effective, and that could overcome the current resistance to anti-influenza drugs. In this context, polyphenolic compounds are found in various plants, and these have displayed different multi-target approaches against diverse pathogens. Among these, green tea (Camellia sinensis) catechins, in special epigallocatechin-3-O-gallate (EGCG), have demonstrated significant activities against the two most relevant human INFV, subtypes A and lineages B. In this sense, EGCG has been found to be a promising multi-target agent against INFV since it can act inhibiting NA, hemagglutination (HA), RNA-dependent RNA polymerase (RdRp), and viral entry/adsorption. In general, the lack of knowledge about potential multi-target natural products prevents an adequate exploration of them, increasing the time for developing multi-target drugs. Then, this review aimed to compile most relevant studies showing the anti-INFV effects of EGCG and its derivatives, which could become antiviral drug prototypes in the future.


Assuntos
Camellia sinensis , Catequina , Infecções por Orthomyxoviridae , Orthomyxoviridae , Antivirais , Catequina/análogos & derivados , Inibidores Enzimáticos , Humanos , Chá
3.
Curr Med Chem ; 29(2): 189-211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33719954

RESUMO

Cancer is an uncontrolled cell growth that can generate diverse types of cancer, in which these will also present a different behavior in the face of pharmacological treatment. These cancers' types are found in one of the three categories, leukemias (also named lymphomas), carcinomas, and sarcomas. In general, cancer's pathogenesis is associated with three genetic mutations, where could emerge from oncogenes, tumor suppressor genes, and/or genes responsible for regulating DNA replication. The term "undruggable" is frequently related to the difficulty to design drugs to specific targets, such as MYC, MYB, NF-κB, and RAS family of proteins. This last comprises more than 140 proteins, and these are responsible for 30% of mutations in human cancers. Also, there are three ras genes transcribed in human cells, called H-, K-, and N-ras oncogenes. Still, the RAS proteins (farnesyltransferase (FTase) and geranylgeranyltransferase (GGTase) enzymes) perform essential steps in post-translational modification of eukaryotes cells, such as (1) the farnesylation of the cysteine residue at the C-terminal tetrapeptide CAAX; (2) proteolytic cleavage of the three C-terminal AAX oligopeptide; and (3) carboxymethylation of the new C-terminal prenylated cysteine. Thus, the inhibition of this undruggable RAS family of proteins has been considered a promising alternative to design new anticancer agents since they are responsible for many types of human cancers. Then, the manumycin A (obtained from the Streptomyces parvulus Tü64) and its analogs (epoxyquinol core with or without their southern and eastern side chains; and dihydroxycyclohexenones core) have been described as promising FTase inhibitors, which have demonstrated their benefits against several types of cancer. In this review, a complete introduction about cancer and its relation with RAS proteins is provided, as well as, the prenylation mechanism of the cysteine residue is discussed in detail. Posteriorly, studies involving manumycin-related compounds are described, showing some synthetic routes for obtaining them and utilizing these natural products in monotherapies or combined therapies with other anticancer drugs.


Assuntos
Alquil e Aril Transferases , Produtos Biológicos , Neoplasias , Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase , Humanos , Neoplasias/tratamento farmacológico , Polienos , Alcamidas Poli-Insaturadas
4.
Bioorg Med Chem ; 41: 116213, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33992862

RESUMO

Chagas disease and Human African Trypanosomiasis (HAT) are caused by Trypanosoma cruzi and T. brucei parasites, respectively. Cruzain (CRZ) and Rhodesain (RhD) are cysteine proteases that share 70% of identity and play vital functions in these parasites. These macromolecules represent promising targets for designing new inhibitors. In this context, 26 CRZ and 5 RhD 3D-structures were evaluated by molecular redocking to identify the most accurate one to be utilized as a target. Posteriorly, a virtual screening of a library containing 120 small natural and nature-based compounds was performed on both of them. In total, 14 naphthoquinone-based analogs were identified, synthesized, and biologically evaluated. In total, five compounds were active against RhD, being three of them also active on CRZ. A derivative of 1,4-naphthoquinonepyridin-2-ylsulfonamide was found to be the most active molecule, exhibiting IC50 values of 6.3 and 1.8 µM for CRZ and RhD, respectively. Dynamic simulations at 100 ns demonstrated good stability and do not alter the targets' structures. MM-PBSA calculations revealed that it presents a higher affinity for RhD (-25.3 Kcal mol-1) than CRZ, in which van der Waals interactions were more relevant. A mechanistic hypothesis (via C3-Michael-addition reaction) involving a covalent mode of inhibition for this compound towards RhD was investigated by covalent molecular docking and DFT B3LYP/6-31 + G* calculations, exhibiting a low activation energy (ΔG‡) and providing a stable product (ΔG), with values of 7.78 and - 39.72 Kcal mol-1, respectively; similar to data found in the literature. Nevertheless, a reversibility assay by dilution revealed that JN-11 is a time-dependent and reversible inhibitor. Finally, this study applies modern computer-aided techniques to identify promising inhibitors from a well-known chemical class of natural products. Then, this work could inspire other future studies in the field, being useful for designing potent naphthoquinones as RhD inhibitors.


Assuntos
Desenho Assistido por Computador , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Desenho de Fármacos , Proteínas de Protozoários/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , 1-Naftilamina/análogos & derivados , Aminoquinolinas , Inibidores de Cisteína Proteinase/química , Descoberta de Drogas , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA