Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 261(3): 593-606, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38195894

RESUMO

Gall formation impacts the development of plant species by altering the structure and mobilization of reserves, and the functional and physiological patterns of the host organ. The current study aimed to evaluate the impact generated by the Neolithus fasciatus galling insect (Hemiptera: Triozidae) in Sapium glandulosum leaves (Euphorbiaceae) at the cytological, histological, histochemical, and biochemical levels. Non-galled leaves and galls in the young, mature, and senescent stages were evaluated. The non-galled leaf has a uniseriate epidermis, stomata only on the abaxial side, a dorsiventral mesophyll, and parenchyma cells with thin primary walls containing chloroplasts with plastoglobules. The gall has a parenchymatous compartmentalized cortex. The young and mature galls already have a dense cytoplasm, especially in the inner cells of the cortex, with chloroplasts, mitochondria, Golgi complex, and large and evident nuclei. In senescent galls, there are signs of organelle degradation and cell digestion. Carbohydrates occur in greater amounts in the mature gall, mainly in the starch grain form, while proteins and lipids predominate in non-galled leaves. Secondary metabolites occur mainly in the young gall and may be related to its protection and to the signaling of its development. Sapium glandulosum galls have histological and cytological compartmentalization of the cortex with a large amount of carbohydrates, which supply energy to maintain the development of the structure.


Assuntos
Hemípteros , Sapium , Animais , Cloroplastos , Carboidratos , Tumores de Planta , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA