Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
2.
Mol Cytogenet ; 11: 40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008805

RESUMO

BACKGROUND: Myelodysplastic syndrome (MDS) is rare in the pediatric age group and it may be associated with inheritable bone marrow failure (BMF) such as Fanconi anemia (FA). FA is a rare multi-system genetic disorder, characterized by congenital malformations and progressive BMF. Patients with FA usually present chromosomal aberrations when evolving to MDS or acute myeloid leukemia (AML). Thus, the cytogenetic studies in the bone marrow (BM) of these patients have an important role in the therapeutic decision, mainly in the indication for hematopoietic stem cell transplantation (HSCT). The most frequent chromosomal alterations in the BM of FA patients are gains of the chromosomal regions 1q and 3q, and partial or complete loss of chromosome 7. However, the significance and the predictive value of such clonal alterations, with respect to malignant progress, are not fully understood and data from molecular cytogenetic studies are very limited. CASE PRESENTATION: A five-year-old boy presented recurrent infections and persistent anemia. The BM biopsy revealed hypocellularity. G-banding was performed on BM cells and showed a normal karyotype. The physical examination showed to be characteristic of FA, being the diagnosis confirmed by DEB test. Five years later, even with supportive treatment, the patient presented severe hypocellularity and BM evolution revealing megakaryocyte dysplasia, intense dyserythropoiesis, and 11% myeloblasts. G-banded analysis showed an abnormal karyotype involving a der(9)t(9;11)(p24;q?22). The FISH analysis showed the monoallelic loss of ATM and KMT2A genes. At this moment the diagnosis was MDS, refractory anemia with excess of blasts (RAEB). Allogeneic HSCT was indicated early in the diagnosis, but no donor was found. Decitabine treatment was initiated and well tolerated, although progression to AML occurred 3 months later. Chemotherapy induction was initiated, but there was no response. The patient died due to disease progression and infection complications. CONCLUSIONS: Molecular cytogenetic analysis showed a yet unreported der(9)t(9;11)(p24;q?22),der(11)t(9;11)(p24;q?22) during the evolution from FA to MDS/AML. The FISH technique was important allowing the identification at the molecular level of the monoallelic deletion involving the KMT2A and ATM genes. Our results suggest that this chromosomal alteration conferred a poor prognosis, being associated with a rapid leukemic transformation and a poor treatment response.

3.
Mol Cytogenet ; 10: 35, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912835

RESUMO

BACKGROUND: Children with Down syndrome (DS) have an enhanced risk of developing acute leukemia, with the most common subtype being acute megakaryoblastic leukemia (AMKL). Myeloid leukemia in Down syndrome (ML-DS) is considered a disease with distinct clinical and biological features. There are few studies focusing on the clonal cytogenetic changes during evolution of ML-DS. CASE PRESENTATION: Here, we describe a complex karyotype involving a previously unreported set of chromosomal abnormalities acquired during progression of ML-DS in an infant boy: derivative der(1)t(1;15)(q24;q23), translocation t(4;5)(q26;q33) and derivative der(15)t(7;15)(p21;q23). Different molecular cytogenetic probes and probesets including whole chromosome painting (WCP) and locus specific probes, as well as, multicolor-FISH and multicolor chromosome banding (MCB) were performed in order to characterize the chromosomal abnormalities involved in this complex karyotype. The patient was treated according to the acute myeloid leukemia-Berlin-Frankfurt-Munich-2004 (AML-BFM 2004) treatment protocol for patients with Down syndrome; however, he experienced a poor clinical outcome. CONCLUSION: The molecular cytogenetic studies performed, allowed the characterization of novel chromosomal abnormalities in ML-DS and possible candidate genes involved in the leukemogenic process. Our findings suggest that the complex karyotype described here was associated with the poor prognosis.

4.
Hematol Oncol ; 35(4): 760-768, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27282883

RESUMO

In pediatric acute leukemias, reciprocal chromosomal translocations frequently cause gene fusions involving the lysine (K)-specific methyltransferase 2A gene (KMT2A, also known as MLL). Specific KMT2A fusion partners are associated with the disease phenotype (lymphoblastic vs. myeloid), and the type of KMT2A rearrangement also has prognostic implications. However, the KMT2A partner gene cannot always be identified by banding karyotyping. We sought to identify such partner genes in 13 cases of childhood leukemia with uninformative karyotypes by combining molecular techniques, including multicolor banding FISH, reverse-transcriptase PCR, and long-distance inverse PCR. Of the KMT2A fusion partner genes, MLLT3 was present in five patients, all with acute lymphoblastic leukemia, MLLT1 in two patients, and MLLT10, MLLT4, MLLT11, and AFF1 in one patient each. Reciprocal reading by long-distance inverse PCR also disclosed KMT2A fusions with PITPNA in one patient, with LOC100132273 in another patient, and with DNA sequences not compatible with any gene in three patients. The most common KMT2A breakpoint region was intron/exon 9 (3/8 patients), followed by intron/exon 11 and 10. Finally, multicolor banding revealed breakpoints in other chromosomes whose biological and prognostic implications remain to be determined. We conclude that the combination of molecular techniques used in this study can efficiently identify KMT2A fusion partners in complex pediatric acute leukemia karyotypes. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Criança , Pré-Escolar , Citogenética , Humanos , Lactente , Cariótipo , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Masculino
5.
Mol Cytogenet ; 8: 62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257826

RESUMO

Deletions in the long arm of chromosome 5 or loss of the whole chromosome are rare in childhood Acute Myeloid Leukemia (AML) patients. It is also unknown if the wide variety of breakpoints have diverging implications in the patient's outcome. Despite -5/5q- abnormalities have usually been described as a poor prognostic feature, however, the low frequency of -5/5q- in pediatric AML patients limits a full knowledge about this cytogenetic and clinical category, which is an intriguing factor for further research and new findings. Here, we report an AML child showing an uncommon deletion in 5q associated with 2 new abnormalities involving chromosome 2 within a complex karyotype well-characterized by several molecular cytogenetic approaches. Our work stimulates upcoming studies with more detailed descriptions about 5q abnormalities to better define its role in the stratification risk of such cytogenetic subgroup in childhood AML.

7.
Mol Cytogenet ; 8: 45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26136832

RESUMO

BACKGROUND: Acute lymphoblastic leukemia (ALL) is not a single uniform disease. It consists of several subgroups with different cytogenetic and molecular genetic aberrations, clinical presentations and outcomes. Banding cytogenetics plays a pivotal role in the detection of recurrent chromosomal rearrangements and is the starting point of genetic analysis in ALL, still. Nowadays, molecular (cyto)genetic tools provide substantially to identify previously non-detectable, so-called cryptic chromosomal aberrations in ALL. However, ALL according to banding cytogenetics with normal karyotype - in short cytogenetically normal ALL (CN-ALL) - represent up to ~50 % of all new diagnosed ALL cases. The overall goal of this study was to identify and characterize the rate of cryptic alterations in CN-ALL and to rule out if one single routine approach may be sufficient to detect most of the cryptic alterations present. RESULTS: Sixty-one ALL patients with CN-ALL were introduced in this study. All of them underwent high resolution fluorescence in situ hybridization (FISH) analysis. Also DNA could be extracted from 34 ALL samples. These DNA-samples were studied using a commercially available MLPA (multiplex ligation-dependent probe amplification) probe set directed against 37 loci in hematological malignancies and/or array-comparative genomic hybridization (aCGH). Chromosomal aberrations were detected in 21 of 61 samples (~34 %) applying FISH approaches: structural abnormalities were present in 15 cases and even numerical ones were identified in 6 cases. Applying molecular approaches copy number alterations (CNAs) were detected in 27/34 samples. Overall, 126 CNAs were identified and only 34 of them were detectable by MLPA (~27 %). Loss of CNs was identified in ~80 % while gain of CNs was present in ~20 % of the 126 CNAs. A maximum of 13 aberrations was detected per case; however, only one aberration per case was found in 8 of all in detail studied 34 cases. Of special interest among the detected CNAs are the following new findings: del(15)(q26.1q26.1) including CHD2 gene was found in 20 % of the studied ALL cases, dup(18)(q21.2q21.2) with the DCC gene was present in 9 % of the cases, and the CDK6 gene in 7q21.2 was deleted in 12 % of the here in detail studied ALL cases. CONCLUSIONS: In conclusion, high resolution molecular cytogenetic tools and molecular approaches like MLPA and aCGH need to be combined in a cost-efficient way, to identify disease and progression causing alterations in ALL, as majority of them are cryptic in banding cytogenetic analyses.

8.
Pediatr Blood Cancer ; 61(8): 1422-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24668946

RESUMO

BACKGROUND: Burkitt lymphoma/leukemia (BL/L) is cytogenetically characterized by the t(8;14)(q24;q32) or its variants, t(2;8)(p11;q21), and t(8;22)(q24;q11.2), which juxtapose the MYC oncogene to one of the three immunoglobulin loci. The overall cure rate of BL/L in children is 70-90%, but patients diagnosed with advanced-stage disease have a less favorable prognosis. It is possible that secondary chromosomal abnormalities contribute to this unfavorable prognosis via chemotherapy resistance, but the results of genetic studies have been inconsistent. This study aimed to identify and characterize secondary chromosomal abnormalities associated with the t(8;14) and its variants in children with French-American-British-L3 leukemia or Burkitt lymphoma with bone marrow involvement at the time of diagnosis. PROCEDURE: Chromosome analysis was based on G-banding. Fluorescence in situ hybridization technique was applied using IGH/MYC/CEP8 dual-fusion and MYC break-apart probes. Multicolor chromosome banding was performed according to standard protocol. RESULTS: We describe a group of BL/L with extreme adverse clinical outcome, in which secondary chromosomal abnormalities, particularly those involving the long arms of chromosomes 1 and 13, were found in 71% of cases. The IGH/MYC fusion showed molecular heterogeneity in 14% of cases and two cases exhibited three IGH/MYC fusion signals. CONCLUSIONS: Secondary chromosomal abnormalities were found in a high proportion of patients. We observed an extent of IGH/MYC heterogeneity not previously reported in Burkitt lymphoma, including the novel finding of three fusion signals in two cases.


Assuntos
Medula Óssea/patologia , Linfoma de Burkitt , Cromossomos Humanos/genética , Proteínas de Fusão Oncogênica/genética , Translocação Genética , Adolescente , Brasil , Linfoma de Burkitt/genética , Linfoma de Burkitt/patologia , Criança , Pré-Escolar , Coloração Cromossômica , Citogenética , Feminino , Humanos , Masculino
10.
Rev Bras Hematol Hemoter ; 35(5): 369-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24255623

RESUMO

Chromosome abnormalities that usually define high-risk acute lymphoblastic leukemia are the t(9;22)/ breakpoint cluster region protein-Abelson murine leukemia viral oncogene homolog 1, hypodiploid with < 44 chromosomes and 11q23/ myeloid/lymphoid leukemia gene rearrangements. The spectrum of acute lymphoblastic leukemia genetic abnormalities is nevertheless rapidly expanding. Therefore, newly described chromosomal aberrations are likely to have an impact on clinical care in the near future. Recently, the rare intrachromosomal amplification of chromosome 21 started to be considered a high-risk chromosomal abnormality. It occurs in approximately 2-5% of pediatric patients with B-cell precursor acute lymphoblastic leukemia. This abnormality is associated with a poor outcome. Hence, an accurate detection of this abnormality is expected to become very important in the choice of appropriate therapy. In this work the clinical and molecular cytogenetic evaluation by fluorescence in situ hybridization of a child with B-cell precursor acute lymphoblastic leukemia presenting the rare intrachromosomal amplification of chromosome 21 is described.

12.
Rev. bras. hematol. hemoter ; 35(5): 369-371, 2013. graf
Artigo em Inglês | LILACS | ID: lil-694069

RESUMO

Chromosome abnormalities that usually define high-risk acute lymphoblastic leukemia are the t(9;22)/ breakpoint cluster region protein-Abelson murine leukemia viral oncogene homolog 1, hypodiploid with < 44 chromosomes and 11q23/ myeloid/lymphoid leukemia gene rearrangements. The spectrum of acute lymphoblastic leukemia genetic abnormalities is nevertheless rapidly expanding. Therefore, newly described chromosomal aberrations are likely to have an impact on clinical care in the near future. Recently, the rare intrachromosomal amplification of chromosome 21 started to be considered a high-risk chromosomal abnormality. It occurs in approximately 2-5% of pediatric patients with B-cell precursor acute lymphoblastic leukemia. This abnormality is associated with a poor outcome. Hence, an accurate detection of this abnormality is expected to become very important in the choice of appropriate therapy. In this work the clinical and molecular cytogenetic evaluation by fluorescence in situ hybridization of a child with B-cell precursor acute lymphoblastic leukemia presenting the rare intrachromosomal amplification of chromosome 21 is described.


Assuntos
Humanos , Linfócitos B , Criança , /genética , Amplificação de Genes , Hibridização in Situ Fluorescente , Leucemia Aguda Bifenotípica , Leucemia Linfoide , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Fatores de Transcrição
13.
Case Rep Genet ; 2012: 186532, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23074685

RESUMO

Acute lymphoblastic leukemia (ALL), CD10+ B-cell precursor, represents the most frequent type of childhood ALL from 3 to 6 years of age. The t(12;21)(p13;q22) occurs in 25% of cases of B-cell precursor ALL, it is rare in children less than 24 months and have been related to good prognosis. Some relapse cases and unfavorable prognosis in ALL CD10+ are associated with t(12;21) bearing additional aberrations as extra copies of chromosome 21 and ETV6 gene loss. This report describes the case of a 15 month-year old girl, who displayed a karyotype with addition on chromosome 12p plus trisomy 10 and tetrasomy of chromosome 21. Molecular cytogenetic studies revealed two extra copies of the der(21) t(12;21), trisomy 10 and deletion of the second ETV6 gene due to the dic(12;18). These findings show the great importance of molecular cytogenetic studies to clarify complex karyotypes, to define prognostic, to carry out risk group stratification and to support correctly disease treatment in childhood acute lymphoblastic leukemia.

18.
Int J Hematol ; 93(2): 232-236, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21207210

RESUMO

Classical Burkitt lymphoma/leukemia (BL/L) presenting L3 morphology is found in 1% of childhood ALL. Recently, it has been described that secondary abnormalities could influence the prognosis of these patients. However, little information is available on these cytogenetic abnormalities and their prognostic importance in BL/L. Here, we report four new childhood BL/L cases associated with duplication within 1q or 13q, which exhibited a very unfavorable therapeutic response. We performed both classical and molecular cytogenetic analysis by multicolor chromosome banding of the secondary abnormalities involving the long arms of chromosome 1 or 13. These patients were previously treated with BFM-90 protocol. All of them died during or after the initial treatment. Here, for the first time, the exact breakpoints of the derivative chromosomes involved were determined at the cytogenetic level as 1q21 and 13q33 each.


Assuntos
Linfoma de Burkitt/genética , Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 8/genética , Duplicação Gênica , Rearranjo Gênico , Linfoma de Burkitt/diagnóstico , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Humanos , Masculino , Prognóstico , Índice de Gravidade de Doença
20.
Cancer Genet Cytogenet ; 200(2): 167-9, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20620601

RESUMO

Acute myeloid leukemia in childhood is a heterogeneous group of diseases, and different epidemiologic factors are involved in the etiopathogenesis. Genetic syndromes are one of the predisposing factors of acute myeloid leukemia (AML), including Down syndrome, Bloom syndrome, and neurofibromatosis. Acute megakaryoblastic leukemia (AMKL) is the main subtype in Down syndrome infants, and acquired chromosomal anomalies are closely related to the physiopathology of the illness. The main chromosomal anomalies in AMKL are structural, such as t(1;22); however, complex karyotypes are also common. Here we describe the case of an infant with neurofibromatosis developing AMKL with a complex karyotype including 5q and 17q deletions, TP53 deletion, and an unusual unbalanced chromosomal translocation t(11;19)(q13;p13), leading to three copies of the MLL gene.


Assuntos
Hibridização in Situ Fluorescente/métodos , Leucemia Megacarioblástica Aguda/genética , Neurofibromatoses/genética , Feminino , Genes p53 , Histona-Lisina N-Metiltransferase , Humanos , Lactente , Cariotipagem , Proteína de Leucina Linfoide-Mieloide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA