Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Apoptosis ; 29(1-2): 1-2, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794219

RESUMO

Fas and Fas ligand (FasL)-induced cell death is critical for the appropriate regulation of immune responses, especially those mediated by T cells. In this letter, several studies are discussed that reinforce the importance of FasL intracellular signaling for CD4 + T cell death, which might involve PSTPIP phosphatase and/or MAPKs.


Assuntos
Apoptose , Receptor fas , Proteína Ligante Fas/genética , Transdução de Sinais , Morte Celular
2.
Cytokine ; 173: 156408, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37925788

RESUMO

Cytokines are known for their pleiotropic effects. They can be classified by their function as pro-inflammatory, such as tumor necrosis factor (TNF), interleukin (IL) 1 and IL-12, or anti-inflammatory, like IL-10, IL-35 and transforming growth factor ß (TGF-ß). Though this type of classification is an important simplification for the understanding of the general cytokine's role, it can be misleading. Here, we discuss recent studies that show a dichotomic role of the so-called pro and anti-inflammatory cytokines, highlighting that their function can be dependent on the microenvironment and their concentrations. Furthermore, we discuss how the back-and-forth interplay between cytokines and immunometabolism can influence the dichotomic role of inflammatory responses as an important target to complement cytokine-based therapies.


Assuntos
Citocinas , Interleucina-1 , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Anti-Inflamatórios , Imunidade
3.
Cancer Pathog Ther ; 1(1): 76-86, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38328613

RESUMO

The adaptive arm of the immune system is crucial for appropriate antitumor immune responses. It is generally accepted that clusters of differentiation 4+ (CD4+) T cells, which mediate T helper (Th) 1 immunity (type 1 immunity), are the primary Th cell subtype associated with tumor elimination. In this review, we discuss evidence showing that antitumor immunity and better prognosis can be associated with distinct Th cell subtypes in experimental mouse models and humans, with a focus on Th2 cells. The aim of this review is to provide an overview and understanding of the mechanisms associated with different tumor outcomes in the face of immune responses by focusing on the (1) site of tumor development, (2) tumor properties (i. e., tumor metabolism and cytokine receptor expression), and (3) type of immune response that the tumor initially escaped. Therefore, we discuss how low-tolerance organs, such as lungs and brains, might benefit from a less tissue-destructive immune response mediated by Th2 cells. In addition, Th2 cells antitumor effects can be independent of CD8+ T cells, which would circumvent some of the immune escape mechanisms that tumor cells possess, like low expression of major histocompatibility-I (MHC-I). Finally, this review aims to stimulate further studies on the role of Th2 cells in antitumor immunity and briefly discusses emerging treatment options.

4.
Immunol Med ; 45(3): 146-161, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34962854

RESUMO

The emergence of horizontal transmission of cancer between vertebrates is an issue that interests scientists and medical society. Transmission requires: (i) a mechanism by which cancer cells can transfer to another organism and (ii) a repressed immune response on the part of the recipient. Transmissible tumors are unique models to comprehend the responses and mechanisms mediated by the major histocompatibility complex (MHC), which can be transposed for transplant biology. Here, we discuss the mechanisms involved in immune-mediated tissue rejection, making a parallel with transmissible cancers. We also discuss cellular and molecular mechanisms involved in cancer immunotherapy and anti-rejection therapies.


Assuntos
Imunoterapia , Neoplasias , Animais , Antígenos de Histocompatibilidade , Fatores Imunológicos , Complexo Principal de Histocompatibilidade , Neoplasias/genética , Neoplasias/terapia
5.
Free Radic Biol Med ; 173: 104-116, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303829

RESUMO

BACKGROUND: Chloroquine has been used successfully to treat Malaria, including by chloroquine-resistant Plasmodium sp., indicating that it has effects on disease itself. Since heme has inflammatory effects and contributes to the pathogenesis of hemolytic diseases, we hypothesize that the anti-inflammatory effect of chloroquine is partially due to its inhibitory effect on heme-induced macrophage activation and on inflammatory tissue damage. METHODS: Bone marrow derived macrophages (BMDMs) were incubated with chloroquine before stimulation with heme, in different conditions, to evaluate cytokines secretion, ROS production, mitogen activated protein kinases (MAPK) or spleen tyrosine kinase (Syk) activation, alone or combined with LPS. The effects of chloroquine upon heme inflammation were also evaluated in vivo, through simultaneous i.p. injection of LPS and heme, intratracheal instillation of Poly-IC followed by heme injection, and in a rhabdomyolysis model. RESULTS: Chloroquine inhibited TNF secretion, mitochondrial ROS production, MAPK, and Syk activation induced by heme. Inhibition of TNF production could be mimicked by zinc ionophore quercetin, but not by primaquine, a chloroquine analog with low affinity for heme. IL-6 and IL-1ß secretions induced by heme in the presence of PRRs agonists were inhibited by chloroquine, but not by calcium chelator BAPTA or inhibitor of endosomal acidification concamycin B. Chloroquine also protected mice from heme inflammatory effects in vivo, inhibiting lethal synergism with PRR agonists, lung pathology caused by heme injection after intratracheal instillation of Poly-IC, and delaying death after rhabdomyolisis. CONCLUSION: Our data indicate that chloroquine might be used as a supportive therapy to control heme-induced deleterious inflammation in different hemolytic diseases.


Assuntos
Cloroquina , Heme , Animais , Citocinas , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos , Macrófagos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA