Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Doc Ophthalmol ; 147(1): 71-75, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37369909

RESUMO

BACKGROUND: Pseudophakic cystoid macular edema (PCME) is the most common cause of visual acuity deterioration after uncomplicated cataract surgery. There is no consensus regarding how to manage recurrent or refractory cases. REPORT: A 54-year-old woman complained of decreased vision and central metamorphopsia in the right eye (OD) 3 months after uneventful cataract surgery. Visual acuity was 0.3 logMAR (20/40) OD and 0.1 logMAR (20/25) OS. Reduced macular brightness was seen OD on funduscopy associated with increased macular thickness on optical coherence tomography (OCT). Pseudophakic cystoid macular edema (PCME) was diagnosed, and treatment with oral acetazolamide was tried without success. The patient underwent a single intravitreal injection of an acetazolamide implant (260 µg) OD as off-label treatment. Four weeks following the injection, she reported complete resolution of her metamorphopsia and visual loss OD. Four months later, her visual acuity was 0.0 logMAR (20/20) in OD and 0.1 logMAR (20/25) in OS. The patient reported no discomfort after the injection procedure. Laboratory and ophthalmologic tests did not identify any adverse effects of the medication. CONCLUSION: We show that PCME refractory to conventional treatment improved after intravitreal acetazolamide implant injection. Further investigation is warranted to confirm these preliminary findings.


Assuntos
Extração de Catarata , Catarata , Edema Macular , Humanos , Feminino , Pessoa de Meia-Idade , Edema Macular/diagnóstico , Edema Macular/tratamento farmacológico , Edema Macular/etiologia , Acetazolamida/uso terapêutico , Eletrorretinografia , Extração de Catarata/efeitos adversos , Tomografia de Coerência Óptica , Injeções Intravítreas , Catarata/complicações , Catarata/tratamento farmacológico
2.
Int J Pharm ; 636: 122809, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36894043

RESUMO

Intravitreal injections are the preferred choice for drug administration to the posterior segment of the eye. However, the required frequent injections may cause complications to the patient and low adherence to the treatment. Intravitreal implants are able to maintain therapeutic levels for a long period. Biodegradable nanofibers can modulate drug release and allow the incorporation of fragile bioactive drugs. Age-related macular degeneration is one of the world major causes of blindness and irreversible vision loss. It involves the interaction between VEGF and inflammatory cells. In this work we developed nanofiber-coated intravitreal implants containing dexamethasone and bevacizumab for simultaneously delivery of these drugs. The implant was successfully prepared and the efficiency of the coating process was confirmed by scanning electron microscopy. Around 68% of dexamethasone was released in 35 days and 88% of bevacizumab in 48hs. The formulation presented activity in the reduction of vessels and was safe to the retina. It was not observed any clinical or histopathological change, neither alteration in retina function or thickness by electroretinogram and optical coherence tomography during 28 days. The nanofiber-coated implants of dexamethasone and bevacizumab may be considered as a new delivery system that can be effective for the treatment of AMD.


Assuntos
Glucocorticoides , Nanofibras , Animais , Coelhos , Bevacizumab , Dexametasona , Implantes de Medicamento , Injeções Intravítreas , Inibidores da Angiogênese , Resultado do Tratamento
3.
Pharmaceutics ; 15(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678822

RESUMO

Mometasone furoate (MF) is a medium-potency synthetic glucocorticosteroid with anti-inflammatory, antipruritic, and vasoconstrictive properties. However, its role in the treatment of ocular inflammation has not yet been explored. This work investigated the anti-inflammatory activity of MF in ocular tissues. First, the in vivo safety of the intravitreal (IVT) injection of MF (80, 160, and 240 µg) was evaluated via clinical examination (including the assessment of intraocular pressure), electroretinography (ERG), and histopathology. Second, MF was tested in an experimental model of bacillus Calmette-Guérin (BCG)-induced uveitis in Wistar rats. Intraocular inflammation was then evaluated via a slit-lamp and fundus examination, ERG, histopathology, and the quantification of pro-inflammatory markers. Intravitreal MF showed no toxicity in all the investigated doses, with 160 µg leading to attenuated disease progression and improvement in clinical, morphological, and functional parameters. There was a significant reduction in the levels of inflammatory markers (myeloperoxidase, interleukins 6 and 1ß, CXCL-1, and tumor necrosis factor-alpha) when compared to the levels in untreated animals. Therefore, MF should be further investigated as a promising drug for the treatment of ocular inflammation.

4.
Rev. Soc. Bras. Med. Trop ; 56: e0552, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1441077

RESUMO

ABSTRACT Background: Ocular toxoplasmosis is the leading cause of infectious posterior uveitis worldwide, accounting for 30-50% of all cases in immunocompetent patients. Conventional treatment is associated with adverse effects and does not prevent recurrence. Intravitreal drug administration can improve disease outcomes and reduce side effects. Herein, we conducted a systematic review and meta-analysis on the efficacy of intravitreal injections for treating ocular toxoplasmosis. Methods: The systematic search was conducted using PubMed, SciELO, and Google Scholar with the descriptors "ocular toxoplasmosis" AND "intravitreal". We analyzed studies that met the inclusion criteria, i.e., experimental cases in patients treated intravitreally for ocular toxoplasmosis. Considering the systematic review, we focused on the number of intravitreal injections, the therapeutic drug class, and the presence of preexisting conditions. To assess the efficacy of intravitreal injections, a meta-analysis was performed using visual acuity, side effects, disease recurrence, and inflammatory responses as variables. Results: Intravitreal injection-induced side effects were rarely observed (0.49% [0.00, 1.51%] ). The use of antiparasitic and anti-inflammatory drugs afforded improved visual acuity (99.81% [98.60, 100.00%]) and marked effectiveness in treating ocular toxoplasmosis. Conclusions: Intravitreal injections may facilitate the successful treatment of ocular toxoplasmosis. However, clinicians should carefully evaluate the presence of preexisting conditions for ocular toxoplasmosis or previous diseases, as these can impact the decision to administer intravitreal injections.

5.
Pharmaceutics ; 14(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36365212

RESUMO

Doxorubicin (DOX) is an antineoplastic agent clinically employed for treating breast cancer patients. Despite its effectiveness, its inherent adverse toxic side effects often limit its clinical application. To overcome these drawbacks, lipid-polymer hybrid nanoparticles (LPNP) arise as promising nanoplatforms that combine the advantages of both liposomes and polymeric nanoparticles into a single delivery system. Alpha-tocopherol succinate (TS) is a derivative of vitamin E that shows potent anticancer mechanisms, and it is an interesting approach as adjuvant. In this study, we designed a pH-sensitive PLGA-polymer-core/TPGS-lipid-shell hybrid nanoparticle, loaded with DOX and TS (LPNP_TS-DOX). Nanoparticles were physicochemically and morphologically characterized. Cytotoxicity studies, migration assay, and cellular uptake were performed in 4T1, MCF-7, and MDA-MB-231 cell lines. Antitumor activity in vivo was evaluated in 4T1 breast tumor-bearing mice. In vitro studies showed a significant reduction in cell viability, cell migration, and an increase in cellular uptake for the 4T1 cell line compared to free DOX. In vivo antitumor activity showed that LPNP-TS-DOX was more effective in controlling tumor growth than other treatments. The high cellular internalization and the pH-triggered payload release of DOX lead to the increased accumulation of the drugs in the tumor area, along with the synergic combination with TS, culminating in greater antitumor efficacy. These data support LPNP-TS-DOX as a promising drug delivery system for breast cancer treatment.

6.
Eur J Pharm Biopharm ; 179: 26-36, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36041595

RESUMO

Sodium butyrate-loaded nanoparticles coated chitosan (NaBu-loaded nanoparticles/CS) were developed to treat the choroidal neovascularization in wet age-related macular degeneration (AMD). The nanoparticles were produced by double emulsification and solvent evaporation technique, optimized by experimental statistical design, characterized by analytical methods, investigated in terms of in vitro and in vivo ocular biocompatibility, and evaluated as an antiangiogenic system in vivo. The NaBu-loaded nanoparticles/CS were 311.1 ± 3.1 nm in diameter with a 0.208 ± 0.007 polydispersity index; had a +56.3 ± 2.6 mV zeta potential; showed a 92.3 % NaBu encapsulation efficiency; and sustained the drug release over 35 days. The NaBu-loaded nanoparticles/CS showed no toxicity to human retinal pigment epithelium cells (ARPE-19 cells); was not irritant to the chorioallantoic membrane (CAM); did not interfere in the integrity of the retinal layers of rat's eyes, as detected by the Optical Coherence Tomography and histopathology; and inhibited the angiogenesis in CAM assay. The NaBu-loaded nanoparticles/CS could be a therapeutic alternative to limit the neovascularization in AMD.


Assuntos
Quitosana , Nanopartículas , Degeneração Macular Exsudativa , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Ácido Butírico/uso terapêutico , Humanos , Ratos , Solventes , Degeneração Macular Exsudativa/tratamento farmacológico
7.
J Control Release ; 350: 228-243, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995297

RESUMO

Vectorized small interfering RNAs (siRNAs) are widely used to induce gene silencing. Among the delivery systems used, lipid-based particles are the most effective. Our objective was the development of novel lipid-polymer hybrid nanoparticles, from lipoplexes (complexes of cationic lipid and siRNAs), and poly (lactic-co-glycolic acid) (PLGA), using a simple modified nanoprecipitation method. Due to their morphology, we called these hybrid nanoparticles Spheroplexes. We elucidated their structure using several physico-chemical techniques and showed that they are composed of a hydrophobic PLGA matrix, surrounded by a lipid envelope adopting a lamellar structure, in which the siRNA is complexed, and they retain surface characteristics identical to the starting nanoparticles, i.e. lipoplexes siRNA. We analyzed the composition of the particle population and determined the final percentage of spheroplexes within this population, 80 to 85% depending on the preparation conditions, using fluorescent markers and the ability of flow cytometry to detect nanometric particles (approximately 200 nm). Finally, we showed that spheroplexes are very stable particles and more efficient than siRNA lipoplexes for the delivery of siRNA to cultured cells. We administered spheroplexes contain siRNAs targeting TNF-α to mice with ulcerative colitis induced by dextran sulfate and our results indicate a disease regression effect with a response probably mediated by their uptake by macrophages / monocytes at the level of lamina propria of the colon. The efficacy of decreased level of TNF-α in vivo seemed to be an association of spheroplexes polymer-lipid composition and the specific siRNA. These results demonstrate that spheroplexes are a promising hybrid nanoparticle for the oral delivery of siRNA to the colon.


Assuntos
Nanopartículas , Fator de Necrose Tumoral alfa , Animais , Cátions/química , Sulfato de Dextrana , Lipídeos/química , Lipossomos , Camundongos , Nanopartículas/química , Polímeros/química , RNA Interferente Pequeno
8.
Rev. ciênc. farm. básica apl ; 43: 1-10, 20220101.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1349119

RESUMO

At present, ophthalmic drug delivery remains a major challenge, given the eye's protective structure and susceptibility to irritation, resulting in poor patient adherence. In order to overcome these constraints, new formulations are continually being developed. The inclusion of Galactoxyloglucan (Tamarind seed polysaccharide (TSP) in such formulations, a natural substance extracted from the seeds of Tamarindus indica, has shown great potential due to its physicochemical properties, high biocompatibility and safety profile. Such properties, have led to its use in formulations for the treatment of dry eye disease, glaucoma, and bacterial keratitis, as well as in dilating eye drops used in eye examinations. In this article, we highlight the most recent TSPbased ophthalmologic formulations, which indicate that this polymer is a strong candidate to reduce adverse effects, improve patient tolerability and drug bioavailability.

9.
Braz. J. Pharm. Sci. (Online) ; 58: e21310, 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1420508

RESUMO

Abstract In the hospital environment, postoperative pain is a common occurrence that impairs patient recovery and rehabilitation and lengthens hospitalization time. Racemic bupivacaine hydrochloride (CBV) and Novabupi® (NBV) (S (-) 75% R (+) 25% bupivacaine hydrochloride) are two examples of local anesthetics used in pain management, the latter being an alternative with less deleterious effects. In the present study, biodegradable implants were developed using Poly(L-lactide-co-glycolide) through a hot molding technique, evaluating their physicochemical properties and their in vitro drug release. Different proportions of drugs and polymer were tested, and the proportion of 25%:75% was the most stable for molding the implants. Thermal and spectrometric analyses were performed, and they revealed no unwanted chemical interactions between drugs and polymer. They also confirmed that heating and freeze-drying used for manufacturing did not interfere with stability. The in vitro release results revealed drugs sustained release, reaching 64% for NBV-PLGA and 52% for CBV-PLGA up to 30 days. The drug release mechanism was confirmed by microscopy, which involved pores formation and polymeric erosion, visualized in the first 72 h of the in vitro release test. These findings suggest that the developed implants are interesting alternatives to control postoperative pain efficiently.


Assuntos
Dor Pós-Operatória/classificação , Bupivacaína/análise , Implantes Absorvíveis/classificação , Anestésicos Locais/administração & dosagem , Técnicas In Vitro/métodos , Preparações Farmacêuticas/análise , Hospitais/classificação
10.
J Ocul Pharmacol Ther ; 37(5): 290-300, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33761287

RESUMO

Purpose: This study investigated the safety and therapeutic efficacy of licarin A (LCA) in the treatment of intraocular inflammation. Methods:In vitro safety of LCA in retinal pigmented epithelial cells (ARPE-19) and human embryonic stem cell derived-retinal pigmented epithelial cells (hES-RPE) was evaluated using CellTiter-Blue® kit. The chorioallantoic membrane (CAM) assay was used to investigate LCA safety and antiangiogenic activity. In vivo safety of intravitreal LCA was accomplished by clinical examination (including assessment of intraocular pressure), electroretinography (ERG), and histopathology. Uveitis was induced in rats by subcutaneous and intravitreal injection of bacillus Calmette-Guérin (BCG) antigen of Mycobacterium bovis. Intraocular inflammation was graded by slit-lamp and fundus examination, ERG, and histopathology. Results: LCA was safe to cells and to the CAM at concentration below 12.0 µM. LCA significantly reduced the percentage of blood vessels in the CAM. Retinal safety and anti-inflammatory efficacy of intravitreal injection of LCA 6.0 µM were confirmed through clinical, functional, and histopathological evaluation. Significant reduction of inflammatory cytokines (tumor necrosis factor-α and interleukin-6) was also found, when compared to untreated animals. Conclusion: The results suggest that LCA is a potential new drug for the treatment of inflammatory eye disease.


Assuntos
Inibidores da Angiogênese/farmacologia , Inflamação/tratamento farmacológico , Lignanas/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Membrana Corioalantoide/metabolismo , Modelos Animais de Doenças , Descoberta de Drogas , Eletrorretinografia/métodos , Oftalmopatias/patologia , Inflamação/diagnóstico , Pressão Intraocular/efeitos dos fármacos , Injeções Intravítreas , Lignanas/administração & dosagem , Lignanas/uso terapêutico , Masculino , Ratos , Ratos Wistar , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/embriologia , Segurança , Resultado do Tratamento , Uveíte/induzido quimicamente , Uveíte/patologia
11.
Doc Ophthalmol ; 142(1): 75-85, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32623534

RESUMO

PURPOSE: To verify the safety of different doses of intravitreal metoprolol tartrate (MT) after intravitreal injection in rabbit eyes. METHODS: Animals were randomly assigned into 2 groups: group I received 50 µg of MT and group II 100 µg of MT. A volume of 0.05 mL of the drug solution was administered through an intravitreal injection, while the control eyes received an equal volume of saline solution. Safety was assessed by clinical observation, electroretinography (ERG) and histological evaluation. RESULTS: No evidence of clinical toxicity was observed. ERG waveforms from the MT treated eyes were similar to those recorded from the control eyes in dark-adapted state, amplitude and the implicit time are similar between the groups in light-adapted state, and their retinas had no signs of toxicity by histological evaluation 7 days after intravitreal injection. CONCLUSIONS: The intravitreal use of metoprolol at 50 and 100 µg dosages does not cause short-term retinal toxicity in rabbits.


Assuntos
Eletrorretinografia , Metoprolol , Animais , Coelhos , Injeções Intravítreas , Metoprolol/toxicidade , Retina , Corpo Vítreo
12.
Artigo em Inglês | MEDLINE | ID: mdl-32760596

RESUMO

The authors developed a retinoblastoma model using fresh harvested cells from an enucleated eye that were transplanted in chick embryos (chorioallantoic membrane model). The transplanted embryos were treated with escalating doses of Melphalan. This exploratory model was developed with the goal of testing drug sensitivity. Our findings suggest this tumor model could be employed to personalize treatment for patients with retinoblastoma, especially those with bilateral and more refractory disease.

13.
J Ocul Pharmacol Ther ; 36(6): 467-483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32522096

RESUMO

Purpose: Disturbances that affect the inside of the eyeball tend to be highly harmful since they compromise the homeostasis of this organ. Alongside this, the eyeball has several anatomical barriers that prevent the entry of substances. This way, diseases that affect the retina are among those that present greater difficulty in the treatment. In many cases, abnormal proliferation of blood vessels (neovascularization) occurs from the lower layers of the retina. This process damages its structure physiologically and anatomically, causing the rapid and irreversible loss of visual capacity. This work aims to develop nanosuspensions of quantum dots (QDs) conjugated to bevacizumab. Methods: Two types of QDs were produced by aqueous route, stabilized with chitosan conjugated to bevacizumab. The antiangiogenic activity was evaluated in the chorioallantoic membrane model, in which results indicated discrete activity at the doses tested. Samples were assessed for their biosafety in animals, after intravitreal administration, by means of electroretinography (ERG), intraocular pressure (IOP) measurement, histological, morphometric, and immunohistochemical evaluation. Results: No significant alterations were detected in ERG that suggests damage to retinal function by the samples. No significant changes in IOP were also detected. The histological sections did not show signs of acute inflammation, although there was evidence of late retinal damage. The immunohistochemical analysis did not detect any apoptotic bodies. Conclusion: Preliminary results suggest that QDs present potential applicability in ocular therapy, and it is necessary to better characterize their in vivo behavior and to optimize their dosage.


Assuntos
Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Pontos Quânticos/uso terapêutico , Retina/patologia , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/uso terapêutico , Animais , Bevacizumab/administração & dosagem , Bevacizumab/uso terapêutico , Membrana Corioalantoide/efeitos dos fármacos , Contenção de Riscos Biológicos/normas , Eletrorretinografia/métodos , Imuno-Histoquímica/métodos , Pressão Intraocular/efeitos dos fármacos , Injeções Intravítreas , Masculino , Modelos Animais , Nanopartículas/química , Nanopartículas/uso terapêutico , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/tratamento farmacológico , Pontos Quânticos/administração & dosagem , Pontos Quânticos/química , Ratos , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/metabolismo , Suspensões/administração & dosagem , Suspensões/química , Suspensões/farmacocinética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/farmacologia , Fator A de Crescimento do Endotélio Vascular/imunologia
14.
Braz. J. Pharm. Sci. (Online) ; 56: e18484, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132064

RESUMO

Angiogenesis is the formation of new blood vessels from preexisting vasculature. Uncontrolled angiogenesis is associated with progression of several ocular pathologies, such as diabetic retinopathy and macular degeneration. Thus, the inhibition of this process consists in an interesting therapeutic target. Corosolic acid (CA) is a natural derivative of ursolic acid, found in many medicinal herbs and exhibits numerous biological properties, including the antiangiogenic activity. The present study reports the production of CA-loaded poly d,l-lactidecoglycolide acid (PLGA) devices by melt technique. HPLC-UV method was developed and validated to evaluate the uniformity and the release profile of the developed systems. The devices were also characterized by Fourier transform infrared spectroscopy, thermal analysis, and scanning electron morphology. It was studied the antiangiogenic activity of the CA-polymer system, using an in vivo model, the chorioallantoic membrane assay (CAM). CA was dispersed uniformly in the polymer matrix and no chemical interaction between the components of the formulation was verified. The implants presented a sustained release of the drug, which was confirmed by the morphological study and demonstrated an antiangiogenic activity. Therefore, the developed delivery system is a promising therapeutic tool for the treatment of ocular diseases associated with neovascularization or others related to the angiogenic process.


Assuntos
Membrana Corioalantoide/anormalidades , Degeneração Macular/patologia , Neovascularização Patológica/patologia , Polímeros , Raios Ultravioleta/classificação , Preparações Farmacêuticas/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Retinopatia Diabética
15.
Doc Ophthalmol ; 138(3): 181-194, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30809742

RESUMO

PURPOSE: Investigate the potential application of corosolic acid (CA) in the treatment of diseases causing retinal neovascularization. METHODS: CA cytotoxicity effect was evaluated in ARPE-19 cells by sulforhodamine B colorimetric method, and antiangiogenic activity was studied using chorioallantoic membrane (CAM) assay. An amount of 0.01 mL of CA formulations at 5, 10 and 25 µM was injected in the right eyes of Wistar rats, and the contralateral eyes received the vehicle to verify the safety of ophthalmic use. Electroretinography (ERG) was performed before, 7 and 15 days after CA administration. Animals were killed on the 15th day, and the histological analysis of retina was carried out under light microscopy. RESULTS: CA did not present cytotoxicity at concentrations below 35.5 µM after 48 h of treatment. The antiangiogenic activity was confirmed by CAM assay, since CA (range from 5 to 25 µM) induced a significant reduction in vascularity without any signs of toxicity. ERG recordings and histological evaluation did not show any signs of retinal toxicity. CONCLUSIONS: CA was effective in reducing vascularity in a CAM model and was found to be safe for potential ophthalmic use.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Retina/efeitos dos fármacos , Triterpenos/administração & dosagem , Inibidores da Angiogênese/toxicidade , Animais , Linhagem Celular , Membrana Corioalantoide/irrigação sanguínea , Eletrorretinografia/efeitos dos fármacos , Injeções Intravítreas , Masculino , Neovascularização Patológica/tratamento farmacológico , Ratos , Ratos Wistar , Epitélio Pigmentado da Retina/efeitos dos fármacos , Triterpenos/toxicidade , Corpo Vítreo/efeitos dos fármacos
16.
Braz. J. Pharm. Sci. (Online) ; 55: e18112, 2019. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1055319

RESUMO

Neuroimmune interactions underlying the development of pain sensitization in models of neuropathic pain have been widely studied. In this study, we evaluated the development of allodynia and its reduction associated with peripheral antineuroinflammatory effects induced by a dexamethasone-loaded biodegradable implant. Chronic constriction injury (CCI) of the sciatic nerve was performed in Wistar rats. The electronic von Frey test was applied to assess mechanical allodynia. The dexamethasone-loaded implant was placed perineurally at the moment of CCI or 12 days after surgery. Dorsal root ganglia (DRG; L4-L5) were harvested and nuclear extracts were assayed by Western blot for detection of nuclear factor (NF)-κB p65/RelA translocation. Dexamethasone delivered from the implant delayed the development of allodynia for approximately three weeks in CCI rats when the implantation was performed at day 0, but allodynia was not reversed when the implantation was performed at day 12. NF-κB was activated in CCI rat DRG compared with naïve or sham animals (day 15), and dexamethasone implant inhibited p65/RelA translocation in CCI rats compared with control. This study demonstrated that the dexamethasone-loaded implant suppresses allodynia development and peripheral neuroinflammation. This device can reduce the potential side effects associated with oral anti-inflammatory drugs.

17.
Appl Radiat Isot ; 140: 278-288, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30081351

RESUMO

The [18F]Fluorocholine ([18F]FCH) tracer for PET imaging has been proven to be effective for several malignances. However, there are only a few studies related to its breast tumor applicability and they are still limited. The aim of this study was investigate the efficacy of [18F]FCH/PET compared to [18F]FDG/PET in a murine 4T1 mammary carcinoma model treated and nontreated. [18F]FCH/PET showed its applicability for primary tumor and lung metastasis detection and their use for response monitoring of breast cancer therapeutics at earlier stages.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Colina/análogos & derivados , Cinamatos/uso terapêutico , Depsídeos/uso terapêutico , Progressão da Doença , Feminino , Radioisótopos de Flúor , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Ácido Rosmarínico
18.
Biomed Pharmacother ; 103: 1107-1114, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29715754

RESUMO

The chemotherapeutic agent imiquimod (Imq) is used to treat skin cancers, the most common type of human cancer. However, the high incidence of local and systemic side effects associated with its use as well as its low skin permeation impair patient compliance and therapeutic effectiveness To overcome these limitations, nanostructured systems such as nanoparticles can be a promising alternative. Nanoparticles are submicron particles (size less than 1000 nm) with high surface area that facilitates the interaction and cellular uptake by biological membranes. Therefore, the aim of the present work is to evaluate antiangiogenic effect and antitumoral activity of imiquimod-loaded nanoparticles compared to market Imq formulation. Polymeric nanoparticles containing Imq were obtained by the technique of precipitation of preformed polymer. Antiangiogenic activity of the formulations was determined in chicken embryo chorioallantoic membrane (CAM) and its chemopreventive potential was evaluate during multistage DMBA and croton oil model of skin carcinogenesis in mice. Nanoparticles containing Imq presented antiangiogenic activity superior than negative control, placebo dispersion and market Imq (p < 0.05) in the CAM model and also significantly reduced the number and size of papillomas compared to all other groups. These results suggest, therefore, that the obtained delivery system can be an alternative to treat diseases related to vessels formation and also potentially increase cutaneous permeation and efficacy of poor soluble drugs normally used to treat cutaneous diseases.


Assuntos
Aminoquinolinas/farmacologia , Inibidores da Angiogênese/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Papiloma/prevenção & controle , Neoplasias Cutâneas/prevenção & controle , Aminoquinolinas/administração & dosagem , Aminoquinolinas/farmacocinética , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacocinética , Animais , Embrião de Galinha , Membrana Corioalantoide/metabolismo , Liberação Controlada de Fármacos , Imiquimode , Técnicas In Vitro , Masculino , Camundongos , Papiloma/irrigação sanguínea , Tamanho da Partícula , Neoplasias Cutâneas/irrigação sanguínea , Propriedades de Superfície
19.
AAPS PharmSciTech ; 19(4): 1652-1661, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29516291

RESUMO

Etoposide-loaded poly(lactic-co-glycolic acid) implants were developed for intravitreal application. Implants were prepared by a solvent-casting method and characterized in terms of content uniformity, morphology, drug-polymer interaction, stability, and sterility. In vitro drug release was investigated and the implant degradation was monitored by the percent of mass loss. Implants were inserted into the vitreous cavity of rabbits' eye and the in vivo etoposide release profile was determined. Clinical examination and the Hen Egg Test-Chorioallantoic Membrane (HET-CAM) method were performed to evaluate the implant tolerance. The original chemical structure of the etoposide was preserved after incorporation in the polymeric matrix, which the drug was dispersed uniformly. In vitro, implants promoted sustained release of the drug and approximately 57% of the etoposide was released in 50 days. In vivo, devices released approximately 63% of the loaded drug in 42 days. Ophthalmic examination and HET-CAM assay revealed no evidence of toxic effects of implants. These results tend to show that etoposide-loaded implants could be potentially useful as an intraocular etoposide delivery system in the future.


Assuntos
Implantes de Medicamento/metabolismo , Etoposídeo/metabolismo , Ácido Láctico/metabolismo , Ácido Poliglicólico/metabolismo , Corpo Vítreo/metabolismo , Animais , Galinhas , Implantes de Medicamento/administração & dosagem , Implantes de Medicamento/química , Etoposídeo/administração & dosagem , Etoposídeo/química , Injeções Intravítreas , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Masculino , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coelhos , Corpo Vítreo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA