Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627587

RESUMO

The incidence of kidney disease is increasing worldwide. Acute kidney injury (AKI) can strongly favor cardio-renal syndrome (CRS) type 3 development. However, the mechanism involved in CRS development is not entirely understood. In this sense, mitochondrial impairment in both organs has become a central axis in CRS physiopathology. This study aimed to elucidate the molecular mechanisms associated with cardiac mitochondrial impairment and its role in CRS development in the folic acid-induced AKI (FA-AKI) model. Our results showed that 48 h after FA-AKI, the administration of N-acetyl-cysteine (NAC), a mitochondrial glutathione regulator, prevented the early increase in inflammatory and cell death markers and oxidative stress in the heart. This was associated with the ability of NAC to protect heart mitochondrial bioenergetics, principally oxidative phosphorylation (OXPHOS) and membrane potential, through complex I activity and the preservation of glutathione balance, thus preventing mitochondrial dynamics shifting to fission and the decreases in mitochondrial biogenesis and mass. Our data show, for the first time, that mitochondrial bioenergetics impairment plays a critical role in the mechanism that leads to heart damage. Furthermore, NAC heart mitochondrial preservation during an AKI event can be a valuable strategy to prevent CRS type 3 development.

2.
Life Sci ; 289: 120227, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921866

RESUMO

BACKGROUND: Ischemic kidney injury is a common clinical condition resulting from transient interruption of the kidney's normal blood flow, leading to oxidative stress, inflammation, and kidney dysfunction. The ketogenic diet (KD), a low-carbohydrate, high-fat diet that stimulates endogenous ketone body production, has potent antioxidant and anti-inflammatory effects in distinct tissues and might thus protect the kidney against ischemia and reperfusion (IR) injury. MAIN METHODS: Male Wistar rats were fed a KD or a control diet (CD) for three days before analyzing metabolic parameters or testing nephroprotection. We used two different models of kidney IR injury and conducted biochemical, histological, and Western blot analyses at 24 h and two weeks after surgery. KEY FINDINGS: Acute KD feeding caused protein acetylation, liver AMPK activation, and increased resistance to IR-induced kidney injury. At 24 h after IR, rats on KD presented reduced tubular damage and improved kidney functioning compared to rats fed with a CD. KD attenuated oxidative damage (protein nitration, 4-HNE adducts, and 8-OHdG), increased antioxidant defenses (GPx and SOD activity), and reduced inflammatory intermediates (IL6, TNFα, MCP1), p50 NF-κB expression, and cellular infiltration. Also, KD prevented interstitial fibrosis development at two weeks, up-regulation of HSP70, and chronic Klotho deficiency. SIGNIFICANCE: Our findings demonstrate for the first time that short-term KD increases tolerance to experimental kidney ischemia, opening the opportunity for future therapeutic exploration of a dietary preconditioning strategy to convey kidney protection in the clinic.


Assuntos
Dieta Cetogênica , Regulação da Expressão Gênica , Estresse Oxidativo , Insuficiência Renal Crônica , Animais , Biomarcadores/metabolismo , Inflamação/dietoterapia , Inflamação/metabolismo , Inflamação/patologia , Isquemia/dietoterapia , Isquemia/metabolismo , Isquemia/patologia , Masculino , Ratos , Ratos Wistar , Insuficiência Renal Crônica/dietoterapia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
3.
Neurotox Res ; 38(4): 929-940, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32813208

RESUMO

Neuroprotective approaches comprising different mechanisms to counteract the noxious effects of excitotoxicity and oxidative stress need validation and detailed characterization. Although S-allylcysteine (SAC) is a natural compound exhibiting a broad spectrum of protective effects characterized by antioxidant, anti-inflammatory, and neuromodulatory actions, the mechanisms underlying its protective role on neuronal cell damage triggered by early excitotoxic insults remain elusive. In this study, we evaluated if the preconditioning or the post-treatment of isolated rat cortical slices with SAC (100 µM) can ameliorate the toxic effects induced by the excitotoxic metabolite quinolinic acid (QUIN, 100 µM), and whether this protective response involves the early display of specific antioxidant and neuroprotective signals. For this purpose, cell viability/mitochondrial reductive capacity, lipid peroxidation, levels of reduced and oxidized glutathione (GSH and GSSG, respectively), the rate of cell damage, the NF-E2-related factor 2/antioxidant response element (Nrf2/ARE) binding activity, heme oxygenase 1 (HO-1) regulation, extracellular signal-regulated kinase (ERK1/2) phosphorylation, and the levels of tumor necrosis factor-alpha (TNF-α) and the neurotrophin brain-derived neurotrophic factor (BDNF) were all estimated in tissue slices exposed to SAC and/or QUIN. The incubation of slices with QUIN augmented all toxic endpoints, whereas the addition of SAC prevented and/or recovered all toxic effects of QUIN, exhibiting better results when administered 60 min before the toxin and demonstrating protective and antioxidant properties. The early stimulation of Nrf2/ARE binding activity, the upregulation of HO-1, the ERK1/2 phosphorylation and the preservation of BDNF tissue levels by SAC demonstrate that this molecule displays a wide range of early protective signals by triggering orchestrated antioxidant responses and neuroprotective strategies. The relevance of the characterization of these mechanisms lies in the confirmation that the protective potential exerted by SAC begins at the early stages of excitotoxicity and neurodegeneration and supports the design of integral prophylactic/therapeutic strategies to reduce the deleterious effects observed in neurodegenerative disorders with inherent excitotoxic events.


Assuntos
Elementos de Resposta Antioxidante/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Cisteína/análogos & derivados , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Elementos de Resposta Antioxidante/fisiologia , Córtex Cerebral/efeitos dos fármacos , Cisteína/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Masculino , Fármacos Neuroprotetores/farmacologia , Técnicas de Cultura de Órgãos , Estresse Oxidativo/fisiologia , Ligação Proteica/fisiologia , Ratos , Ratos Wistar
4.
Front Cell Dev Biol ; 8: 622215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33511135

RESUMO

Membrane contact sites (MCS) are typically defined as areas of proximity between heterologous or homologous membranes characterized by specific proteins. The study of MCS is considered as an emergent field that shows how crucial organelle interactions are in cell physiology. MCS regulate a myriad of physiological processes such as apoptosis, calcium, and lipid signaling, just to name a few. The membranal interactions between the endoplasmic reticulum (ER)-mitochondria, the ER-plasma membrane, and the vesicular traffic have received special attention in recent years, particularly in cancer research, in which it has been proposed that MCS regulate tumor metabolism and fate, contributing to their progression. However, as the therapeutic or diagnostic potential of MCS has not been fully revisited, in this review, we provide recent information on MCS relevance on calcium and lipid signaling in cancer cells and on its role in tumor progression. We also describe some proteins associated with MCS, like CERT, STIM1, VDAC, and Orai, that impact on cancer progression and that could be a possible diagnostic marker. Overall, these information might contribute to the understanding of the complex biology of cancer cells.

5.
Neurotox Res ; 37(2): 326-337, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31773641

RESUMO

Caffeic acid (CA) is a hydroxycinnamic acid derivative and polyphenol with antioxidant and anti-inflammatory activities. The neuroprotective properties of CA still need detailed characterization in different biological models. Here, the antioxidant and neuroprotective effects of CA were compared in in vitro and in vivo neurotoxic models. Biochemical outcomes of cell dysfunction, oxidative damage, and transcriptional regulation were assessed in rat cortical slices, whereas endpoints of physiological stress and motor alterations were characterized in Caenorhabditis elegans (C. elegans). In rat cortical slices, CA (100 µM) prevented, in a differential manner, the loss of reductive capacity, the cell damage, and the oxidative damage induced by the excitotoxin quinolinic acid (QUIN, 100 µM), the pro-oxidant ferrous sulfate (FeSO4, 25 µM), and the dopaminergic toxin 6-hydroxydopamine (6-OHDA, 100 µM). CA also restored the levels of nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE; a master antioxidant regulatory pathway) binding activity affected by the three toxins. In wild-type (N2) of C. elegans, but not in the skn-1 KO mutant strain (worms lacking the orthologue of mammalian Nrf2), CA (25 mM) attenuated the loss of survival induced by QUIN (100 mM), FeSO4 (15 mM), and 6-OHDA (25 mM). Motor alterations induced by the three toxic models in N2 and skn-1 KO strains were prevented by CA in a differential manner. Our results suggest that (1) CA affords partial protection against different toxic insults in mammalian brain tissue and in C. elegans specimens; (2) the Nrf2/ARE binding activity participates in the protective mechanisms evoked by CA in the mammalian cortical tissue; (3) the presence of the orthologous skn-1 pathway is required in the worms for CA to exert protective effects; and (4) CA exerts antioxidant and neuroprotective effects through homologous mechanisms in different species.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Cafeicos/farmacologia , Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Córtex Cerebral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Especificidade da Espécie
6.
Liver Transpl ; 24(8): 1070-1083, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29679463

RESUMO

Cytidine-5'-diphosphocholine (CDP-choline) participates as an intermediary in the synthesis of phosphatidylcholine, an essential component of cellular membranes. Citicoline treatment has shown beneficial effects in cerebral ischemia, but its potential to diminish reperfusion damage in liver has not been explored. In this work, we evaluated the hepatoprotective effect of citicoline and its possible association with inflammatory/oxidative stress and mitochondrial function because they are the main cellular features of reperfusion damage. Ischemia/reperfusion (I/R) in rat livers was performed with the Pringle's maneuver, clamping the 3 elements of the pedicle (hepatic artery, portal vein, and biliary tract) for 30 minutes and then removing the clamp to allow hepatic reperfusion for 60 minutes. The I/R + citicoline group received the compound before I/R. Liver injury was evaluated by measuring aspartate aminotransferase and alanine aminotransferase as well as lactic acid levels in serum; proinflammatory cytokines, proresolving lipid mediators, and nuclear factor kappa B content were determined as indicators of the inflammatory response. Antioxidant effects were evaluated by measuring markers of oxidative stress and antioxidant molecules. Oxygen consumption and the activities of the respiratory chain were used to monitor mitochondrial function. CDP-choline reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT), as well as lactic acid levels in blood samples from reperfused rats. Diminution in tumor necrosis factor alpha (TNF-α) and increase in the proresolving lipid mediator resolvin D1 were also observed in the I/R+citicoline group, in comparison with the I/R group. Oxidative/nitroxidative stress in hepatic mitochondria concurred with deregulation of oxidative phosphorylation, which was associated with the loss of complex III and complex IV activities. In conclusion, CDP-choline attenuates liver damage caused by ischemia and reperfusion by reducing oxidative stress and maintaining mitochondrial function. Liver Transplantation XX XX-XX 2018 AASLD.


Assuntos
Citidina Difosfato Colina/farmacologia , Transplante de Fígado/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Citidina Difosfato Colina/uso terapêutico , Modelos Animais de Doenças , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/cirurgia , Testes de Função Hepática , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia
7.
Free Radic Biol Med ; 61: 119-29, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23548636

RESUMO

Curcumin, a natural pigment with antioxidant activity obtained from turmeric and largely used in traditional medicine, is currently being studied in the chemoprevention of several diseases for its pleiotropic effects and nontoxicity. In chronic renal failure, the pathogenic mechanisms leading to cardiovascular disorders have been associated with increased oxidative stress, a process inevitably linked with mitochondrial dysfunction. Thus, in this study we aimed at investigating if curcumin pretreatment exerts cardioprotective effects in a rat model of subtotal nephrectomy (5/6Nx) and its impact on mitochondrial homeostasis. Curcumin was orally administered (120mg/kg) to Wistar rats 7 days before nephrectomy and after surgery for 60 days (5/6Nx+curc). Renal dysfunction was detected a few days after nephrectomy, whereas changes in cardiac function were observed until the end of the protocol. Our results indicate that curcumin treatment protects against pathological remodeling, diminishes ischemic events, and preserves cardiac function in uremic rats. Cardioprotection was related to diminished reactive oxygen species production, decreased oxidative stress markers, increased antioxidant response, and diminution of active metalloproteinase-2. We also observed that curcumin's cardioprotective effects were related to maintaining mitochondrial function. Aconitase activity was significantly higher in the 5/6Nx + curc (408.5±68.7nmol/min/mg protein) than in the 5/6Nx group (104.4±52.3nmol/min/mg protein, P<0.05), and mitochondria from curcumin-treated rats showed enhanced oxidative phosphorylation capacities with both NADH-linked substrates and succinate plus rotenone (3.6±1 vs 1.1±0.9 and 3.1±0.7 vs 1.2±0.8, respectively, P<0.05). The mechanisms involved in cardioprotection included both direct antioxidant effects and indirect strategies that could be related to protein kinase C-activated downstream signaling.


Assuntos
Curcumina/farmacologia , Coração/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Catalase/metabolismo , Coração/fisiopatologia , Rim/fisiopatologia , Masculino , Mitocôndrias/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal Crônica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA