RESUMO
The European Choroid plexus Scientific Forum (ECSF), held in Heidelberg, Germany between the 7th and 9th of November 2023, involved 21 speakers from eight countries. ECSF focused on discussing cutting-edge fundamental and medical research related to the development and functions of the choroid plexus and its implications for health, aging, and disease, including choroid plexus tumors. In addition to new findings in this expanding field, innovative approaches, animal models and 3D in vitro models were showcased to encourage further investigation into choroid plexus and cerebrospinal fluid roles.
Assuntos
Plexo Corióideo , Humanos , Animais , Líquido Cefalorraquidiano , Europa (Continente) , Neoplasias do Plexo CorióideoRESUMO
Characterization of non-neoplastic and malignant human stem cell populations in their native state can provide new insights into gliomagenesis. Here we developed a purification strategy to directly isolate EGFR+/- populations from human germinal matrix (GM) and adult subventricular zone autopsy tissues, and from de novo glioblastoma (GBM) resections, enriching for cells capable of binding EGF ligand (LBEGFR+), and uniquely compared their functional and molecular properties. LBEGFR+ populations in both GM and GBM encompassed all sphere-forming cells and displayed proliferative stem cell properties in vitro. In xenografts, LBEGFR+ GBM cells showed robust tumor initiation and progression to high-grade, infiltrative gliomas. Whole-transcriptome sequencing analysis confirmed enrichment of proliferative pathways in both developing and neoplastic freshly isolated EGFR+ populations, and identified both unique and shared sets of genes. The ability to prospectively isolate stem cell populations using native ligand-binding capacity opens new doors onto understanding both normal human development and tumor cell biology.
Assuntos
Neoplasias Encefálicas/patologia , Proliferação de Células , Glioblastoma/patologia , Células-Tronco Neoplásicas/fisiologia , Células-Tronco Neurais/fisiologia , Animais , Neoplasias Encefálicas/metabolismo , Separação Celular/métodos , Células Cultivadas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/transplante , Células-Tronco Neurais/metabolismo , Cultura Primária de Células/métodos , Transcriptoma , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The mammalian epidermis is a highly accessible tissue in which to study the properties of adult stem cells. Global gene expression profiling has revealed new markers and regulators of the stem cell compartment. Although stem cells have the potential to differentiate into multiple lineages, their progeny follow a more restricted number of lineages in undamaged epidermis as a result of local microenvironmental cues. The response of the epidermis to a particular signal depends on signal strength and duration. Recent advances in the field have led to elucidation of the mechanisms by which stem cells are maintained and the pathways that interact with Wnt signalling to specify lineage choice as cells leave the stem cell compartment. This work has also yielded new insights into skin tumour development.
Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Biomarcadores , Proliferação de Células , Humanos , Transdução de Sinais , Proteínas Wnt/metabolismoRESUMO
Epidermal activation of Erk MAPK is observed in human psoriatic lesions and in a mouse model of psoriasis in which beta1 integrins are expressed in the suprabasal epidermal layers. Constitutive activation of the upstream kinase MEK1 causes hyperproliferation and perturbed differentiation of human keratinocytes in culture. It is not known, however, whether Erk activation in differentiating keratinocytes is sufficient to trigger hyperproliferation of basal keratinocytes and a skin inflammatory infiltrate. To investigate this, we expressed constitutively active MEK1 in the suprabasal epidermal layers of transgenic mice. Proliferation in the epidermal basal layer was stimulated and epidermal terminal differentiation was perturbed. Some older mice also developed papillomas. There was a large increase in T lymphocytes, dendritic cells, and neutrophils in the skin. The effects of suprabasal MEK1 on basal keratinocytes and leukocytes, cells that were transgene negative, suggested that MEK1 activity might stimulate cytokine release. Transgenic keratinocytes expressed elevated IL-1alpha and crossing the mice with mice overexpressing the IL-1 receptor in the epidermal basal layer led to exacerbated hyperproliferation and inflammation. These data suggest that activation of MEK1 downstream of beta1 integrins plays an important role in epidermal hyperproliferation and skin inflammation.
Assuntos
Epiderme/fisiopatologia , Queratinócitos/patologia , Ceratose/fisiopatologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Animais , Biomarcadores , Comunicação Celular/imunologia , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Epiderme/imunologia , Epiderme/patologia , Extremidades , Feminino , Interleucina-1/genética , Queratinócitos/imunologia , Ceratose/imunologia , Ceratose/patologia , MAP Quinase Quinase 1 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Papiloma/imunologia , Papiloma/patologia , Papiloma/fisiopatologia , Fenótipo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/fisiopatologiaRESUMO
Mammalian epidermis is maintained by stem cells that have the ability to self-renew and generate daughter cells that differentiate along the lineages of the hair follicles, interfollicular epidermis and sebaceous gland. As stem cells divide infrequently in adult mouse epidermis, they can be visualised as DNA label-retaining cells (LRC). With whole-mount labelling, we can examine large areas of interfollicular epidermis and many hair follicles simultaneously, enabling us to evaluate stem cell markers and examine the effects of different stimuli on the LRC population. LRC are not confined to the hair follicle, but also lie in sebaceous glands and interfollicular epidermis. LRC reside throughout the permanent region of the hair follicle, where they express keratin 15 and lie in a region of high alpha6beta4 integrin expression. LRC are not significantly depleted by successive hair growth cycles. They can, nevertheless, be stimulated to divide by treatment with phorbol ester, resulting in near complete loss of LRC within 12 days. Activation of Myc stimulates epidermal proliferation without depleting LRC and induces differentiation of sebocytes within the interfollicular epidermis. Expression of N-terminally truncated Lef1 to block beta-catenin signalling induces transdifferentiation of hair follicles into interfollicular epidermis and sebocytes and causes loss of LRC primarily through proliferation. We conclude that LRC are more sensitive to some proliferative stimuli than others and that changes in lineage can occur with or without recruitment of LRC into cycle.