Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830882

RESUMO

We investigated the effects of AET on myomiRs expression in the skeletal muscle and serum of colon cachectic (CT26) and breast non-cachectic (MMTV-PyMT) cancer mice models. Colon cancer decreased microRNA-486 expression, increasing PTEN in tibialis anterior muscle (TA), decreasing the PI3K/mTOR protein pathway, body and muscle wasting, fibers' cross-sectional area and muscle dysfunction, that were not preserved by AET. In contrast, breast cancer decreased those muscle functions, but were preserved by AET. In circulation, the downregulation of microRNA-486 and -206 in colon cancer, and the downregulation of microRNA-486 and upregulation of microRNA-206 expression in breast cancer might be good cancer serum biomarkers. Since the microRNA-206 is skeletal muscle specific, their expression was increased in the TA, serum and tumor in MMTV, suggesting a communication among these three compartments. The AET prevents these effects on microRNA-206, but not on microRNA-486 in MMTV. In conclusion, cancer induced a downregulation of microRNA-486 expression in TA and serum of CT26 and MMTV mice and these effects were not prevented by AET; however, to MMTV, the trained muscle function was preserved, probably sustained by the downregulation of microRNA-206 expression. Serum microRNA-206 is a potential biomarker for colon (decreased) and breast (increased) cancer to monitor the disease evolution and the effects promoted by the AET.

2.
Oxid Med Cell Longev ; 2017: 2415246, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28367267

RESUMO

Background. We investigated the effects of exercise training (ET) on miR-126 levels and skeletal muscle angiogenesis in obese Zucker rats. Results. Zucker rats were randomly assigned to sedentary and swimming-trained groups: lean sedentary (LS) and trained (LTR); obese sedentary (OB) and trained (OBTR). The OB group displayed capillary rarefaction compared with the LS group. In contrast, ET increased the capillary/fiber ratio by 38% in the LTR group and normalized capillary rarefaction in the OBTR group. VEGF, PI3K, and eNOS levels were reduced in the skeletal muscle of the OB group. ET normalized VEGF, PI3K, and eNOS levels in OBTR, contributing to vascular network homeostasis. PI3KR2 inhibits PI3K, a key mediator of the VEGF signaling pathway. Obesity decreased miR-126 and increased PI3KR2 levels compared with the LS group. However, ET normalized miR-126 levels in the OBTR group versus the LS group and decreased expression of PI3KR2. Conclusion. Our findings show that obesity leads to skeletal muscle capillary rarefaction, which is regulated by decreased miR-126 levels and increased PI3KR2. Inversely, ET normalizes miR-126 levels and VEGF signaling and should be considered an important therapeutic strategy for vascular disorders.


Assuntos
Capilares/fisiologia , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Animais , Composição Corporal/fisiologia , Citrato (si)-Sintase/metabolismo , Regulação para Baixo , Masculino , Músculo Esquelético/enzimologia , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Ratos , Ratos Zucker , Transdução de Sinais , Natação , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA