Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897429

RESUMO

The zebra mussel, Dreissena polymorpha, continues to spread from its native range in Eurasia to Europe and North America, causing billions of dollars in damage and dramatically altering invaded aquatic ecosystems. Despite these impacts, there are few genomic resources for Dreissena or related bivalves. Although the D. polymorpha genome is highly repetitive, we have used a combination of long-read sequencing and Hi-C-based scaffolding to generate a high-quality chromosome-scale genome assembly. Through comparative analysis and transcriptomics experiments, we have gained insights into processes that likely control the invasive success of zebra mussels, including shell formation, synthesis of byssal threads, and thermal tolerance. We identified multiple intact steamer-like elements, a retrotransposon that has been linked to transmissible cancer in marine clams. We also found that D. polymorpha have an unusual 67 kb mitochondrial genome containing numerous tandem repeats, making it the largest observed in Eumetazoa. Together these findings create a rich resource for invasive species research and control efforts.


Assuntos
Dreissena , Animais , Dreissena/genética , Ecossistema , Genoma , Genômica , Espécies Introduzidas
3.
Cancer Res ; 78(9): 2343-2355, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437708

RESUMO

Tumor-associated macrophages (TAM) play a critical role in cancer development and progression. However, the heterogeneity of TAM presents a major challenge to identify clinically relevant markers for protumor TAM. Here, we report that expression of adipocyte/macrophage fatty acid-binding protein (A-FABP) in TAM promotes breast cancer progression. Although upregulation of A-FABP was inversely associated with breast cancer survival, deficiency of A-FABP significantly reduced mammary tumor growth and metastasis. Furthermore, the protumor effect of A-FABP was mediated by TAM, in particular, in a subset of TAM with a CD11b+F4/80+MHCII-Ly6C- phenotype. A-FABP expression in TAM facilitated protumor IL6/STAT3 signaling through regulation of the NFκB/miR-29b pathway. Collectively, our results suggest A-FABP as a new functional marker for protumor TAM.Significance: These findings identify A-FABP as a functional marker for protumor macrophages, thus offering a new target for tumor immunotherapy. Cancer Res; 78(9); 2343-55. ©2018 AACR.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ligação a Ácido Graxo/genética , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Macrófagos/patologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Metástase Neoplásica
4.
BMC Genomics ; 18(1): 578, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28778149

RESUMO

BACKGROUND: Third generation sequencing technologies, with sequencing reads in the tens- of kilo-bases, facilitate genome assembly by spanning ambiguous regions and improving continuity. This has been critical for plant genomes, which are difficult to assemble due to high repeat content, gene family expansions, segmental and tandem duplications, and polyploidy. Recently, high-throughput mapping and scaffolding strategies have further improved continuity. Together, these long-range technologies enable quality draft assemblies of complex genomes in a cost-effective and timely manner. RESULTS: Here, we present high quality genome assemblies of the model legume plant, Medicago truncatula (R108) using PacBio, Dovetail Chicago (hereafter, Dovetail) and BioNano technologies. To test these technologies for plant genome assembly, we generated five assemblies using all possible combinations and ordering of these three technologies in the R108 assembly. While the BioNano and Dovetail joins overlapped, they also showed complementary gains in continuity and join numbers. Both technologies spanned repetitive regions that PacBio alone was unable to bridge. Combining technologies, particularly Dovetail followed by BioNano, resulted in notable improvements compared to Dovetail or BioNano alone. A combination of PacBio, Dovetail, and BioNano was used to generate a high quality draft assembly of R108, a M. truncatula accession widely used in studies of functional genomics. As a test for the usefulness of the resulting genome sequence, the new R108 assembly was used to pinpoint breakpoints and characterize flanking sequence of a previously identified translocation between chromosomes 4 and 8, identifying more than 22.7 Mb of novel sequence not present in the earlier A17 reference assembly. CONCLUSIONS: Adding Dovetail followed by BioNano data yielded complementary improvements in continuity over the original PacBio assembly. This strategy proved efficient and cost-effective for developing a quality draft assembly compared to traditional reference assemblies.


Assuntos
Genômica/métodos , Genômica/normas , Medicago truncatula/genética , Cromossomos de Plantas/genética , Análise Custo-Benefício , Genoma de Planta/genética , Genômica/economia , Controle de Qualidade , Padrões de Referência , Fatores de Tempo
5.
Clin Cancer Res ; 23(16): 4704-4715, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28473535

RESUMO

Purpose: Androgen receptor (AR) variant AR-V7 is a ligand-independent transcription factor that promotes prostate cancer resistance to AR-targeted therapies. Accordingly, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The purpose of this study was to understand whether other AR variants may be coexpressed with AR-V7 and promote resistance to AR-targeted therapies.Experimental Design: We utilized complementary short- and long-read sequencing of intact AR mRNA isoforms to characterize AR expression in CRPC models. Coexpression of AR-V7 and AR-V9 mRNA in CRPC metastases and circulating tumor cells was assessed by RNA-seq and RT-PCR, respectively. Expression of AR-V9 protein in CRPC models was evaluated with polyclonal antisera. Multivariate analysis was performed to test whether AR variant mRNA expression in metastatic tissues was associated with a 12-week progression-free survival endpoint in a prospective clinical trial of 78 CRPC-stage patients initiating therapy with the androgen synthesis inhibitor, abiraterone acetate.Results: AR-V9 was frequently coexpressed with AR-V7. Both AR variant species were found to share a common 3' terminal cryptic exon, which rendered AR-V9 susceptible to experimental manipulations that were previously thought to target AR-V7 uniquely. AR-V9 promoted ligand-independent growth of prostate cancer cells. High AR-V9 mRNA expression in CRPC metastases was predictive of primary resistance to abiraterone acetate (HR = 4.0; 95% confidence interval, 1.31-12.2; P = 0.02).Conclusions: AR-V9 may be an important component of therapeutic resistance in CRPC. Clin Cancer Res; 23(16); 4704-15. ©2017 AACR.


Assuntos
Androstenos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Variação Genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Masculino , Metástase Neoplásica , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Receptores Androgênicos/metabolismo
6.
Nat Immunol ; 18(6): 694-704, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28369050

RESUMO

The transcription factor STAT5 has a critical role in B cell acute lymphoblastic leukemia (B-ALL). How STAT5 mediates this effect is unclear. Here we found that activation of STAT5 worked together with defects in signaling components of the precursor to the B cell antigen receptor (pre-BCR), including defects in BLNK, BTK, PKCß, NF-κB1 and IKAROS, to initiate B-ALL. STAT5 antagonized the transcription factors NF-κB and IKAROS by opposing regulation of shared target genes. Super-enhancers showed enrichment for STAT5 binding and were associated with an opposing network of transcription factors, including PAX5, EBF1, PU.1, IRF4 and IKAROS. Patients with a high ratio of active STAT5 to NF-κB or IKAROS had more-aggressive disease. Our studies indicate that an imbalance of two opposing transcriptional programs drives B-ALL and suggest that restoring the balance of these pathways might inhibit B-ALL.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Linfócitos B , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição Ikaros/genética , Receptores de Células Precursoras de Linfócitos B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fator de Transcrição STAT5/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Imunoprecipitação da Cromatina , Citometria de Fluxo , Humanos , Fatores Reguladores de Interferon/genética , Camundongos , Reação em Cadeia da Polimerase Multiplex , Subunidade p50 de NF-kappa B/genética , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Prognóstico , Proteína Quinase C beta/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Taxa de Sobrevida , Transativadores/genética
7.
Cell Rep ; 14(8): 1979-90, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26904939

RESUMO

To identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1) neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/ß-catenin pathway that becomes active in the context of Nf1 loss. Genetic deletion of Stat3 in Schwann cell progenitors (SCPs) and Schwann cells (SCs) prevents neurofibroma formation, decreasing SCP self-renewal and ß-catenin activity. ß-catenin expression rescues effects of Stat3 loss in SCPs. Importantly, P-STAT3 and ß-catenin expression correlate in human neurofibromas. Mechanistically, P-Stat3 represses Gsk3ß and the SWI/SNF gene Arid1b to increase ß-catenin. Knockdown of Arid1b or Gsk3ß in Stat3(fl/fl);Nf1(fl/fl);DhhCre SCPs rescues neurofibroma formation after in vivo transplantation. Stat3 represses Arid1b through histone modification in a Brg1-dependent manner, indicating that epigenetic modification plays a role in early tumorigenesis. Our data map a neural tumorigenesis pathway and support testing JAK/STAT and Wnt/ß-catenin pathway inhibitors in neurofibroma therapeutic trials.


Assuntos
Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Acetiltransferase N-Terminal A/genética , Neurofibromatose 1/genética , Neoplasias do Sistema Nervoso Periférico/genética , Fator de Transcrição STAT3/genética , beta Catenina/genética , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Nus , Mutagênese Insercional , Acetiltransferase N-Terminal A/antagonistas & inibidores , Acetiltransferase N-Terminal A/metabolismo , Transplante de Neoplasias , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias do Sistema Nervoso Periférico/metabolismo , Neoplasias do Sistema Nervoso Periférico/patologia , Fosforilação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patologia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo
8.
Genome Med ; 7: 127, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26643039

RESUMO

Comprehensive identification of insertions/deletions (indels) across the full size spectrum from second generation sequencing is challenging due to the relatively short read length inherent in the technology. Different indel calling methods exist but are limited in detection to specific sizes with varying accuracy and resolution. We present ScanIndel, an integrated framework for detecting indels with multiple heuristics including gapped alignment, split reads and de novo assembly. Using simulation data, we demonstrate ScanIndel's superior sensitivity and specificity relative to several state-of-the-art indel callers across various coverage levels and indel sizes. ScanIndel yields higher predictive accuracy with lower computational cost compared with existing tools for both targeted resequencing data from tumor specimens and high coverage whole-genome sequencing data from the human NIST standard NA12878. Thus, we anticipate ScanIndel will improve indel analysis in both clinical and research settings. ScanIndel is implemented in Python, and is freely available for academic use at https://github.com/cauyrd/ScanIndel.


Assuntos
Mutação INDEL , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Genoma Humano , Genômica/métodos , Humanos , Sensibilidade e Especificidade
9.
BMC Cancer ; 15: 769, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26497383

RESUMO

BACKGROUND: Alterations in methylation patterns, miRNA expression, and stem cell protein expression occur in germ cell tumors (GCTs). Our goal is to integrate molecular data across platforms to identify molecular signatures in the three main histologic subtypes of Type I and Type II GCTs (yolk sac tumor (YST), germinoma, and teratoma). METHODS: We included 39 GCTs and 7 paired adjacent tissue samples in the current analysis. Molecular data available for analysis include DNA methylation data (Illumina GoldenGate Cancer Methylation Panel I), miRNA expression (NanoString nCounter miRNA platform), and stem cell factor expression (SABiosciences Human Embryonic Stem Cell Array). We evaluated the cross platform correlations of the data features using the Maximum Information Coefficient (MIC). RESULTS: In analyses of individual datasets, differences were observed by tumor histology. Germinomas had higher expression of transcription factors maintaining stemness, while YSTs had higher expression of cytokines, endoderm and endothelial markers. We also observed differences in miRNA expression, with miR-371-5p, miR-122, miR-302a, miR-302d, and miR-373 showing elevated expression in one or more histologic subtypes. Using the MIC, we identified correlations across the data features, including six major hubs with higher expression in YST (LEFTY1, LEFTY2, miR302b, miR302a, miR 126, and miR 122) compared with other GCT. CONCLUSIONS: While prognosis for GCTs is overall favorable, many patients experience resistance to chemotherapy, relapse and/or long term adverse health effects following treatment. Targeted therapies, based on integrated analyses of molecular tumor data such as that presented here, may provide a way to secure high cure rates while reducing unintended health consequences.


Assuntos
Metilação de DNA/genética , MicroRNAs/metabolismo , Neoplasias Embrionárias de Células Germinativas/metabolismo , Fator de Células-Tronco/metabolismo , Células-Tronco/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Tumor do Seio Endodérmico/metabolismo , Feminino , Genótipo , Humanos , Lactente , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Adulto Jovem
10.
Mol Cancer Res ; 13(8): 1238-47, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25995385

RESUMO

UNLABELLED: Non-small cell lung cancers (NSCLC) harbor thousands of passenger events that hide genetic drivers. Even highly recurrent events in NSCLC, such as mutations in PTEN, EGFR, KRAS, and ALK, are detected, at most, in only 30% of patients. Thus, many unidentified low-penetrant events are causing a significant portion of lung cancers. To detect low-penetrance drivers of NSCLC, a forward genetic screen was performed in mice using the Sleeping Beauty (SB) DNA transposon as a random mutagen to generate lung tumors in a Pten-deficient background. SB mutations coupled with Pten deficiency were sufficient to produce lung tumors in 29% of mice. Pten deficiency alone, without SB mutations, resulted in lung tumors in 11% of mice, whereas the rate in control mice was approximately 3%. In addition, thyroid cancer and other carcinomas, as well as the presence of bronchiolar and alveolar epithelialization, in mice deficient for Pten were also identified. Analysis of common transposon insertion sites identified 76 candidate cancer driver genes. These genes are frequently dysregulated in human lung cancers and implicate several signaling pathways. Cullin3 (Cul3), a member of a ubiquitin ligase complex that plays a role in the oxidative stress response pathway, was identified in the screen and evidence demonstrates that Cul3 functions as a tumor suppressor. IMPLICATIONS: This study identifies many novel candidate genetic drivers of lung cancer and demonstrates that CUL3 acts as a tumor suppressor by regulating oxidative stress.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Culina/genética , Elementos de DNA Transponíveis , Genes Supressores de Tumor , Neoplasias Pulmonares/genética , Mutagênese , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Estresse Oxidativo , Transdução de Sinais
11.
Arch Pathol Lab Med ; 139(2): 204-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25611102

RESUMO

CONTEXT: Although next-generation sequencing (NGS) can revolutionize molecular diagnostics, several hurdles remain in the implementation of this technology in clinical laboratories. OBJECTIVES: To validate and implement an NGS panel for genetic diagnosis of more than 100 inherited diseases, such as neurologic conditions, congenital hearing loss and eye disorders, developmental disorders, nonmalignant diseases treated by hematopoietic cell transplantation, familial cancers, connective tissue disorders, metabolic disorders, disorders of sexual development, and cardiac disorders. The diagnostic gene panels ranged from 1 to 54 genes with most of panels containing 10 genes or fewer. DESIGN: We used a liquid hybridization-based, target-enrichment strategy to enrich 10 067 exons in 568 genes, followed by NGS with a HiSeq 2000 sequencing system (Illumina, San Diego, California). RESULTS: We successfully sequenced 97.6% (9825 of 10 067) of the targeted exons to obtain a minimum coverage of 20× at all bases. We demonstrated 100% concordance in detecting 19 pathogenic single-nucleotide variations and 11 pathogenic insertion-deletion mutations ranging in size from 1 to 18 base pairs across 18 samples that were previously characterized by Sanger sequencing. Using 4 pairs of blinded, duplicate samples, we demonstrated a high degree of concordance (>99%) among the blinded, duplicate pairs. CONCLUSIONS: We have successfully demonstrated the feasibility of using the NGS platform to multiplex genetic tests for several rare diseases and the use of cloud computing for bioinformatics analysis as a relatively low-cost solution for implementing NGS in clinical laboratories.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Raras/diagnóstico , Biologia Computacional , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Éxons/genética , Estudos de Viabilidade , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Testes Genéticos/normas , Variação Genética , Genótipo , Humanos , Mutação , Doenças Raras/genética , Análise de Sequência de DNA
12.
Cancer Res ; 74(11): 2986-98, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24713431

RESUMO

Fatty acid-binding proteins (FABP) are known central regulators of both metabolic and inflammatory pathways, but their role in tumor development remains largely unexplored. Here, we report that host expression of epidermal FABP (E-FABP) protects against mammary tumor growth. We find that E-FABP is highly expressed in macrophages, particularly in a specific subset, promoting their antitumor activity. In the tumor stroma, E-FABP-expressing tumor-associated macrophages (TAM) produce high levels of IFN-ß through upregulation of lipid droplet formation in response to tumors. E-FABP-mediated IFN-ß signaling can further enhance recruitment of tumoricidal effector cells, in particular natural killer cells, to the tumor stroma for antitumor activity. These findings identify E-FABP as a new protective factor to strengthen IFN-ß responses against tumor growth.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Interferon beta/metabolismo , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Animais , Epiderme/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/imunologia , Feminino , Expressão Gênica/genética , Humanos , Interferon beta/genética , Interferon beta/imunologia , Células Matadoras Naturais/metabolismo , Lipídeos/genética , Macrófagos/imunologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas
13.
Science ; 344(6180): 168-72, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24723605

RESUMO

Plant embryogenesis initiates with the establishment of an apical-basal axis; however, the molecular mechanisms accompanying this early event remain unclear. Here, we show that a small cysteine-rich peptide family is required for formation of the zygotic basal cell lineage and proembryo patterning in Arabidopsis. EMBRYO SURROUNDING FACTOR 1 (ESF1) peptides accumulate before fertilization in central cell gametes and thereafter in embryo-surrounding endosperm cells. Biochemical and structural analyses revealed cleavage of ESF1 propeptides to form biologically active mature peptides. Further, these peptides act in a non-cell-autonomous manner and synergistically with the receptor-like kinase SHORT SUSPENSOR to promote suspensor elongation through the YODA mitogen-activated protein kinase pathway. Our findings demonstrate that the second female gamete and its sexually derived endosperm regulate early embryonic patterning in flowering plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Padronização Corporal , Flores/embriologia , Sementes/embriologia , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Endosperma/embriologia , Endosperma/genética , Flores/genética , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Quinases Associadas a Receptores de Interleucina-1/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Sementes/genética
14.
Plant J ; 78(4): 697-705, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24635121

RESUMO

The nodule cysteine-rich (NCR) groups of defensin-like (DEFL) genes are one of the largest gene families expressed in the nodules of some legume plants. They have only been observed in the inverted repeat loss clade (IRLC) of legumes, which includes the model legume Medicago truncatula. NCRs are reported to play an important role in plant-microbe interactions. To understand their diversity we analyzed their expression and sequence polymorphisms among four accessions of M. truncatula. A significant expression and nucleotide variation was observed among the genes. We then used 26 accessions to estimate the selection pressures shaping evolution among the accessions by calculating the nucleotide diversity at non-synonymous and synonymous sites in the coding region. The mature peptides of the orthologous NCRs had signatures of both purifying and diversifying selection pressures, unlike the seed DEFLs, which predominantly exhibited purifying selection. The expression, sequence variation and apparent diversifying selection in NCRs within the Medicago species indicates rapid and recent evolution, and suggests that this family of genes is actively evolving to adapt to different environments and is acquiring new functions.


Assuntos
Defensinas/genética , Variação Genética , Medicago truncatula/genética , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/genética , Cisteína/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Interações Hospedeiro-Patógeno , Medicago truncatula/classificação , Medicago truncatula/microbiologia , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeos/genética , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico/genética , Nódulos Radiculares de Plantas/microbiologia , Sementes/genética , Sinorhizobium/fisiologia , Sinorhizobium meliloti/fisiologia , Especificidade da Espécie , Transcriptoma
15.
BMC Vet Res ; 10: 20, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24423165

RESUMO

BACKGROUND: Enzymatic activity of Telomerase Reverse Transcriptase (TERT) is important in maintaining the telomere length and has been implicated in cancer and aging related pathology. Since cancer susceptibility as well as longevity of dogs vary between breeds, this study involved sequencing the entire TERT gene of Canis familiaris from DNA samples obtained from forty dogs, with ten dogs each of four breeds: Shih Tzu, Dachshund, Irish Wolfhound, and Newfoundland, each with different life expectancies and susceptibility to cancer. RESULTS: We compared the sequences of all forty individuals amongst one another and with the published sequence of canine TERT, and analyzed relationships between members of the same or different breeds. Two separate phylogenetic trees were generated and analyzed from these individuals. Polymorphisms were found most frequently in intronic regions of the gene, although exonic polymorphisms also were observed. In many locations genotypes were observed that were either homozygous for the reference sequence or heterozygous, but the variant homozygous genotype was not observed. CONCLUSIONS: We propose that these homozygous variants are likely to have adverse effects in dogs. It was also found that the polymorphisms did not segregate by breed. Because the four breeds chosen come from geographically and physiologically distinct backgrounds, it can be inferred that the polymorphic diversification of TERT preceded breed derivation.


Assuntos
Doenças do Cão/genética , Cães/genética , Longevidade/genética , Neoplasias/veterinária , Polimorfismo Genético/fisiologia , Telomerase/metabolismo , Animais , Regulação Enzimológica da Expressão Gênica , Predisposição Genética para Doença , Neoplasias/genética , Telomerase/genética
16.
BMC Genomics ; 15: 84, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24476358

RESUMO

BACKGROUND: Personal genome assembly is a critical process when studying tumor genomes and other highly divergent sequences. The accuracy of downstream analyses, such as RNA-seq and ChIP-seq, can be greatly enhanced by using personal genomic sequences rather than standard references. Unfortunately, reads sequenced from these types of samples often have a heterogeneous mix of various subpopulations with different variants, making assembly extremely difficult using existing assembly tools. To address these challenges, we developed SHEAR (Sample Heterogeneity Estimation and Assembly by Reference; http://vk.cs.umn.edu/SHEAR), a tool that predicts SVs, accounts for heterogeneous variants by estimating their representative percentages, and generates personal genomic sequences to be used for downstream analysis. RESULTS: By making use of structural variant detection algorithms, SHEAR offers improved performance in the form of a stronger ability to handle difficult structural variant types and better computational efficiency. We compare against the lead competing approach using a variety of simulated scenarios as well as real tumor cell line data with known heterogeneous variants. SHEAR is shown to successfully estimate heterogeneity percentages in both cases, and demonstrates an improved efficiency and better ability to handle tandem duplications. CONCLUSION: SHEAR allows for accurate and efficient SV detection and personal genomic sequence generation. It is also able to account for heterogeneous sequencing samples, such as from tumor tissue, by estimating the subpopulation percentage for each heterogeneous variant.


Assuntos
Software , Algoritmos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Análise de Sequência de RNA/normas , Interface Usuário-Computador
17.
Proc Natl Acad Sci U S A ; 110(43): 17492-7, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101480

RESUMO

Androgen receptor (AR) target genes direct development and survival of the prostate epithelial lineage, including prostate cancer (PCa). Thus, endocrine therapies that inhibit the AR ligand-binding domain (LBD) are effective in treating PCa. AR transcriptional reactivation is central to resistance, as evidenced by the efficacy of AR retargeting in castration-resistant PCa (CRPC) with next-generation endocrine therapies abiraterone and enzalutamide. However, resistance to abiraterone and enzalutamide limits this efficacy in most men, and PCa remains the second-leading cause of male cancer deaths. Here we show that AR gene rearrangements in CRPC tissues underlie a completely androgen-independent, yet AR-dependent, resistance mechanism. We discovered intragenic AR gene rearrangements in CRPC tissues, which we modeled using transcription activator-like effector nuclease (TALEN)-mediated genome engineering. This modeling revealed that these AR gene rearrangements blocked full-length AR synthesis, but promoted expression of truncated AR variant proteins lacking the AR ligand-binding domain. Furthermore, these AR variant proteins maintained the constitutive activity of the AR transcriptional program and a CRPC growth phenotype independent of full-length AR or androgens. These findings demonstrate that AR gene rearrangements are a unique resistance mechanism by which AR transcriptional activity can be uncoupled from endocrine regulation in CRPC.


Assuntos
Rearranjo Gênico , Neoplasias da Próstata/genética , Engenharia de Proteínas/métodos , Receptores Androgênicos/genética , Sequência de Aminoácidos , Androstenos , Androstenóis/uso terapêutico , Animais , Sequência de Bases , Benzamidas , Western Blotting , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Dados de Sequência Molecular , Nitrilas , Análise de Sequência com Séries de Oligonucleotídeos , Orquiectomia , Feniltioidantoína/análogos & derivados , Feniltioidantoína/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Bioinformatics ; 29(18): 2353-4, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23825368

RESUMO

MOTIVATION: Cancer researchers seeking immunotherapy targets in cancer cells need tools to locate highly expressed proteins unique to cancer cells. Missense mutation and frameshift location reporter (MMuFLR), a Galaxy-based workflow, analyzes next-generation sequencing paired read RNA-seq output to reliably identify small frameshift mutations and missense mutations in highly expressed protein-coding genes. MMuFLR ignores known SNPs, low quality reads and poly-A/T sequences. For each frameshift and missense mutation identified, MMuFLR provides the location and sequence of the amino acid substitutions in the novel protein candidates for direct input into epitope evaluation tools. AVAILABILITY: http://toolshed.g2.bx.psu.edu/ CONTACT: rath0096@umn.edu or johns198@umn.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mutação da Fase de Leitura , Mutação de Sentido Incorreto , Software , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Neoplasias/genética , Análise de Sequência de RNA
19.
PLoS One ; 8(4): e60355, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23573247

RESUMO

Root nodules are the symbiotic organ of legumes that house nitrogen-fixing bacteria. Many genes are specifically induced in nodules during the interactions between the host plant and symbiotic rhizobia. Information regarding the regulation of expression for most of these genes is lacking. One of the largest gene families expressed in the nodules of the model legume Medicago truncatula is the nodule cysteine-rich (NCR) group of defensin-like (DEFL) genes. We used a custom Affymetrix microarray to catalog the expression changes of 566 NCRs at different stages of nodule development. Additionally, bacterial mutants were used to understand the importance of the rhizobial partners in induction of NCRs. Expression of early NCRs was detected during the initial infection of rhizobia in nodules and expression continued as nodules became mature. Late NCRs were induced concomitantly with bacteroid development in the nodules. The induction of early and late NCRs was correlated with the number and morphology of rhizobia in the nodule. Conserved 41 to 50 bp motifs identified in the upstream 1,000 bp promoter regions of NCRs were required for promoter activity. These cis-element motifs were found to be unique to the NCR family among all annotated genes in the M. truncatula genome, although they contain sub-regions with clear similarity to known regulatory motifs involved in nodule-specific expression and temporal gene regulation.


Assuntos
Defensinas/genética , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/genética , Sequência de Bases , Mapeamento Cromossômico , Sequência Conservada , Defensinas/metabolismo , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Nodulação , Regiões Promotoras Genéticas , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Deleção de Sequência , Transcriptoma
20.
Cancer Res ; 73(2): 483-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23117885

RESUMO

Persistent androgen receptor (AR) transcriptional activity underlies resistance to AR-targeted therapy and progression to lethal castration-resistant prostate cancer (CRPC). Recent success in retargeting persistent AR activity with next generation androgen/AR axis inhibitors such as enzalutamide (MDV3100) has validated AR as a master regulator during all stages of disease progression. However, resistance to next generation AR inhibitors limits therapeutic efficacy for many patients. One emerging mechanism of CRPC progression is AR gene rearrangement, promoting synthesis of constitutively active truncated AR splice variants (AR-V) that lack the AR ligand-binding domain. In this study, we show that cells with AR gene rearrangements expressing both full-length and AR-Vs are androgen independent and enzalutamide resistant. However, selective knock-down of AR-V expression inhibited androgen-independent growth and restored responsiveness to androgens and antiandrogens. In heterogeneous cell populations, AR gene rearrangements marked individual AR-V-dependent cells that were resistant to enzalutamide. Gene expression profiling following knock-down of full-length AR or AR-Vs showed that AR-Vs drive resistance to AR-targeted therapy by functioning as constitutive and independent effectors of the androgen/AR transcriptional program. Further, mitotic genes deemed previously to be unique AR-V targets were found to be biphasic targets associated with a proliferative level of signaling output from either AR-Vs or androgen-stimulated AR. Overall, these studies highlight AR-Vs as key mediators of persistent AR signaling and resistance to the current arsenal of conventional and next generation AR-directed therapies, advancing the concept of AR-Vs as therapeutic targets in advanced disease.


Assuntos
Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Isoformas de Proteínas , Receptores Androgênicos/genética , Antagonistas de Androgênios/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Benzamidas , Castração , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Rearranjo Gênico , Humanos , Masculino , Neoplasias Hormônio-Dependentes/genética , Nitrilas , Feniltioidantoína/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA