Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142140, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688348

RESUMO

Carbon-encapsulated iron oxide nanoparticles (CE-nFe) have been obtained from an industrial waste (oil mill wastewater-OMW, as a carbonaceous source), and using iron sulfate as metallic precursor. In an initial step, the hydrochar obtained has been thermally activated under an inert atmosphere at three different temperatures (600 °C, 800 °C and 1000 °C). The thermal treatment promotes the development of core-shell nanoparticles, with an inner core of α-Fe/Fe3O4, surrounded by a well-defined graphite shell. Temperatures above 800 °C are needed to promote the graphitization of the carbonaceous species, a process promoted by iron nanoparticles through the dissolution, diffusion and growth of the carbon nanostructures on the outer shell. Breakthrough column tests show that CE-nFe exhibit an exceptional performance for H2S removal with a breakthrough capacity larger than 0.5-0.6 g H2S/gcatalyst after 3 days experiment. Experimental results anticipate the crucial role of humidity and oxygen in the adsorption/catalytic performance. Compared to some commercial samples, these results constitute a three-fold increase in the catalytic performance under similar experimental conditions.


Assuntos
Carbono , Sulfeto de Hidrogênio , Resíduos Industriais , Carbono/química , Resíduos Industriais/análise , Sulfeto de Hidrogênio/química , Adsorção , Catálise , Ferro/química , Águas Residuárias/química , Nanopartículas/química , Compostos Férricos/química
2.
Nat Commun ; 10(1): 2345, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138802

RESUMO

Widespread access to greener energy is required in order to mitigate the effects of climate change. A significant barrier to cleaner natural gas usage lies in the safety/efficiency limitations of storage technology. Despite highly porous metal-organic frameworks (MOFs) demonstrating record-breaking gas-storage capacities, their conventionally powdered morphology renders them non-viable. Traditional powder shaping utilising high pressure or chemical binders collapses porosity or creates low-density structures with reduced volumetric adsorption capacity. Here, we report the engineering of one of the most stable MOFs, Zr-UiO-66, without applying pressure or binders. The process yields centimetre-sized monoliths, displaying high microporosity and bulk density. We report the inclusion of variable, narrow mesopore volumes to the monoliths' macrostructure and use this to optimise the pore-size distribution for gas uptake. The optimised mixed meso/microporous monoliths demonstrate Type II adsorption isotherms to achieve benchmark volumetric working capacities for methane and carbon dioxide. This represents a critical advance in the design of air-stable, conformed MOFs for commercial gas storage.

3.
Langmuir ; 30(41): 12220-8, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25255054

RESUMO

With global warming becoming one of the main problems our society is facing nowadays, there is an urgent demand to develop materials suitable for CO2 storage as well as for gas separation. Within this context, hierarchical porous structures are of great interest for in-flow applications because of the desirable combination of an extensive internal reactive surface along narrow nanopores with facile molecular transport through broad "highways" leading to and from these pores. Deep eutectic solvents (DESs) have been recently used in the synthesis of carbon monoliths exhibiting a bicontinuous porous structure composed of continuous macroporous channels and a continuous carbon network that contains a certain microporosity and provides considerable surface area. In this work, we have prepared two DESs for the preparation of two hierarchical carbon monoliths with different compositions (e.g., either nitrogen-doped or not) and structure. It is worth noting that DESs played a capital role in the synthesis of hierarchical carbon monoliths not only promoting the spinodal decomposition that governs the formation of the bicontinuous porous structure but also providing the precursors required to tailor the composition and the molecular sieve structure of the resulting carbons. We have studied the performance of these two carbons for CO2, N2, and CH4 adsorption in both monolithic and powdered form. We have also studied the selective adsorption of CO2 versus CH4 in equilibrium and dynamic conditions. We found that these materials combined a high CO2-sorption capacity besides an excellent CO2/N2 and CO2/CH4 selectivity and, interestingly, this performance was preserved when processed in both monolithic and powdered form.

4.
Eur J Med Chem ; 45(5): 1982-90, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20153564

RESUMO

Novel nanostructured TiO2 and SiO2 based biocatalysts, with 3-4 wt. % of Pt have been developed. The obtained materials exhibit a high surface area together with a broad pore size distribution. The method of synthesis allowed obtaining high dispersed platinum metal nanoparticles. In vitro DNA reactivity test of the biocatalysts were carried out by electrophoresis and formation of DNA adducts was observed. The most active biocatalyst was H2PtCl6/SiO2. These biocatalysts were also tested in an experimental model of C6 brain tumours in Wistar rats. Administration of the material was made by stereotactic brain surgery to place it directly in the malignant tissue. A significant decrease in tumour size and weight as well as morphologic changes in cancer cells were observed.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , DNA/efeitos dos fármacos , Modelos Animais de Doenças , Nanopartículas Metálicas/uso terapêutico , Nanomedicina , Neoplasias Experimentais/tratamento farmacológico , Platina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biocatálise , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Proliferação de Células/efeitos dos fármacos , DNA/química , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Masculino , Nanopartículas Metálicas/química , Neoplasias Experimentais/patologia , Neoplasias Experimentais/cirurgia , Tamanho da Partícula , Platina/química , Ratos , Ratos Wistar , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA