Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Hepatol ; 80(3): 397-408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37977244

RESUMO

BACKGROUND & AIMS: In non-alcoholic fatty liver disease (NAFLD), monocytes infiltrate visceral adipose tissue promoting local and hepatic inflammation. However, it remains unclear what drives inflammation and how the immune landscape in adipose tissue differs across the NAFLD severity spectrum. We aimed to assess adipose tissue macrophage (ATM) heterogeneity in a NAFLD cohort. METHODS: Visceral adipose tissue macrophages from lean and obese patients, stratified by NAFLD phenotypes, underwent single-cell RNA sequencing. Adipose tissue vascular integrity and breaching was assessed on a protein level via immunohistochemistry and immunofluorescence to determine targets of interest. RESULTS: We discovered multiple ATM populations, including resident vasculature-associated macrophages (ResVAMs) and distinct metabolically active macrophages (MMacs). Using trajectory analysis, we show that ResVAMs and MMacs are replenished by a common transitional macrophage (TransMac) subtype and that, during NASH, MMacs are not effectively replenished by TransMac precursors. We postulate an accessory role for MMacs and ResVAMs in protecting the adipose tissue vascular barrier, since they both interact with endothelial cells and localize around the vasculature. However, across the NAFLD severity spectrum, alterations occur in these subsets that parallel an adipose tissue vasculature breach characterized by albumin extravasation into the perivascular tissue. CONCLUSIONS: NAFLD-related macrophage dysfunction coincides with a loss of adipose tissue vascular integrity, providing a plausible mechanism by which tissue inflammation is perpetuated in adipose tissue and downstream in the liver. IMPACT AND IMPLICATIONS: Our study describes for the first time the myeloid cell landscape in human visceral adipose tissue at single-cell level within a cohort of well-characterized patients with non-alcoholic fatty liver disease. We report unique non-alcoholic steatohepatitis-specific transcriptional changes within metabolically active macrophages (MMacs) and resident vasculature-associated macrophages (ResVAMs) and we demonstrate their spatial location surrounding the vasculature. These dysfunctional transcriptional macrophage states coincided with the loss of adipose tissue vascular integrity, providing a plausible mechanism by which tissue inflammation is perpetuated in adipose tissue and downstream in the liver. Our study provides a theoretical basis for new therapeutic strategies to be directed towards reinstating the endogenous metabolic, homeostatic and cytoprotective functions of ResVAMs and MMacs, including their role in protecting vascular integrity.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Células Endoteliais/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo
2.
Nucleic Acids Res ; 51(10): 5193-5209, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37070602

RESUMO

The long non-coding RNA EPR is expressed in epithelial tissues, binds to chromatin and controls distinct biological activities in mouse mammary gland cells. Because of its high expression in the intestine, in this study we have generated a colon-specific conditional targeted deletion (EPR cKO) to evaluate EPR in vivo functions in mice. EPR cKO mice display epithelium hyperproliferation, impaired mucus production and secretion, as well as inflammatory infiltration in the proximal portion of the large intestine. RNA sequencing analysis reveals a rearrangement of the colon crypt transcriptome with strong reduction of goblet cell-specific factors including those involved in the synthesis, assembly, transport and control of mucus proteins. Further, colon mucosa integrity and permeability are impaired in EPR cKO mice, and this results in higher susceptibility to dextran sodium sulfate (DSS)-induced colitis and tumor formation. Human EPR is down-regulated in human cancer cell lines as well as in human cancers, and overexpression of EPR in a colon cancer cell line results in enhanced expression of pro-apoptotic genes. Mechanistically, we show that EPR directly interacts with select genes involved in mucus metabolism whose expression is reduced in EPR cKO mice and that EPR deletion causes tridimensional chromatin organization changes.


Assuntos
Transformação Celular Neoplásica , Inflamação , Muco , RNA Longo não Codificante , Animais , Humanos , Camundongos , Transformação Celular Neoplásica/imunologia , Colo/metabolismo , Modelos Animais de Doenças , Inflamação/imunologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34824159

RESUMO

BACKGROUND: Natural killer (NK) cells require a functional lytic granule machinery to mediate effective antitumor responses. Evading the lytic cargo deployed at the immune synapse (IS) could be a critical step for cancer progression through yet unidentified mechanisms. METHODS: NK cell antibody-dependent cellular cytotoxicity (ADCC) is a major determinant of the clinical efficacy of some therapeutic antibodies including the anti-HER2 Trastuzumab. Thus, we screened sera of Trastuzumab-resistant HER2 +patients with breast cancer for molecules that could inhibit NK cell ADCC. We validated our findings in vitro using cytotoxicity assays and confocal imaging of the lytic granule machinery and in vivo using syngeneic and xenograft murine models. RESULTS: We found that sera from Trastuzumab-refractory patients could inhibit healthy NK cell ADCC in vitro. These sera contained high levels of the inflammatory protein chitinase 3-like 1 (CHI3L1) compared with sera from responders and healthy controls. We demonstrate that recombinant CHI3L1 inhibits both ADCC and innate NK cell cytotoxicity. Mechanistically, CHI3L1 prevents the correct polarization of the microtubule-organizing center along with the lytic granules to the IS by hindering the receptor of advanced glycation end-products and its downstream JNK signaling. In vivo, CHI3L1 administration drastically impairs the control of NK cell-sensitive tumors, while CHI3L1 blockade synergizes with ADCC to cure mice with HER2 +xenografts. CONCLUSION: Our work highlights a new paradigm of tumor immune escape mediated by CHI3L1 which acts on the cytotoxic machinery and prevents granule polarization. Targeting CHI3L1 could mitigate immune escape and potentiate antibody and cell-based immunotherapies.


Assuntos
Proteína 1 Semelhante à Quitinase-3/metabolismo , Evasão da Resposta Imune/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neoplasias/genética , Animais , Feminino , Humanos , Camundongos
4.
PLoS Genet ; 15(3): e1008076, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30925167

RESUMO

Organoid cultures derived from colorectal cancer (CRC) samples are increasingly used as preclinical models for studying tumor biology and the effects of targeted therapies under conditions capturing in vitro the genetic make-up of heterogeneous and even individual neoplasms. While 3D cultures are initiated from surgical specimens comprising multiple cell populations, the impact of tumor heterogeneity on drug effects in organoid cultures has not been addressed systematically. Here we have used a cohort of well-characterized CRC organoids to study the influence of tumor heterogeneity on the activity of the KRAS/MAPK-signaling pathway and the consequences of treatment by inhibitors targeting EGFR and downstream effectors. MAPK signaling, analyzed by targeted proteomics, shows unexpected heterogeneity irrespective of RAS mutations and is associated with variable responses to EGFR inhibition. In addition, we obtained evidence for intratumoral heterogeneity in drug response among parallel "sibling" 3D cultures established from a single KRAS-mutant CRC. Our results imply that separate testing of drug effects in multiple subpopulations may help to elucidate molecular correlates of tumor heterogeneity and to improve therapy response prediction in patients.


Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias Colorretais/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Neoplasias Colorretais/fisiopatologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Genes erbB-1 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Mutação , Organoides/metabolismo , Organoides/fisiologia , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Transdução de Sinais , Proteínas ras/genética
5.
Eur J Cancer ; 101: 165-180, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30077122

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Dysregulation of protein synthesis plays a major role in carcinogenesis, a process regulated at multiple levels, including translation of mRNA into proteins. Ribosome assembly requires correct association of ribosome subunits, which is ensured by eukaryotic translation initiation factors (eIFs). eIFs have become targets in cancer therapy studies, and promising data on eIF6 in various cancer entities have been reported. Therefore, we hypothesised that eIF6 represents a crossroad for pulmonary carcinogenesis. High levels of eIF6 are associated with shorter patient overall survival in adenocarcinoma (ADC), but not in squamous cell carcinoma (SQC) of the lung. We demonstrate significantly higher protein expression of eIF6 in ADC and SQC than in healthy lung tissue based on immunohistochemical data from tissue microarrays (TMAs) and on fresh frozen lung tissue. Depletion of eIF6 in ADC and SQC lung cancer cell lines inhibited cell proliferation and induced apoptosis. Knockdown of eIF6 led to pre-rRNA processing and ribosomal 60S maturation defects. Our data indicate that eIF6 is upregulated in NSCLC, suggesting an important contribution of eIF6 to the development and progression of NSCLC and a potential for new treatment strategies against NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fatores de Iniciação em Eucariotos/biossíntese , Neoplasias Pulmonares/metabolismo , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Progressão da Doença , Fatores de Iniciação em Eucariotos/genética , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Interferência de RNA
6.
Front Pharmacol ; 9: 77, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491834

RESUMO

Recent advances in next-generation sequencing and other omics technologies capable to map cell fate provide increasing evidence on the crucial role of intra-tumor heterogeneity (ITH) for cancer progression. The different facets of ITH, from genomic to microenvironmental heterogeneity and the hierarchical cellular architecture originating from the cancer stem cell compartment, contribute to the range of tumor phenotypes. Decoding these complex data resulting from the analysis of tumor tissue complexity poses a challenge for developing novel therapeutic strategies that can counteract tumor evolution and cellular plasticity. To achieve this aim, the development of in vitro and in vivo cancer models that resemble the complexity of ITH is crucial in understanding the interplay of cells and their (micro)environment and, consequently, in testing the efficacy of new targeted treatments and novel strategies of tailoring combinations of treatments to the individual composition of the tumor. This challenging approach may be an important cornerstone in overcoming the development of pharmaco-resistances during multiple lines of treatment. In this paper, we report the latest advances in patient-derived 3D (PD3D) cell cultures and patient-derived tumor xenografts (PDX) as in vitro and in vivo models that can retain the genetic and phenotypic heterogeneity of the tumor tissue.

7.
Front Oncol ; 7: 203, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955656

RESUMO

Over the past decade, the development of new targeted therapeutics directed against specific molecular pathways involved in tumor cell proliferation and survival has allowed an essential improvement in carcinoma treatment. Unfortunately, the scenario is different for sarcomas, a group of malignant neoplasms originating from mesenchymal cells, for which the main therapeutic approach still consists in the combination of surgery, chemotherapy, and radiation therapy. The lack of innovative approaches in sarcoma treatment stems from the high degree of heterogeneity of this tumor type, with more that 70 different histopathological subtypes, and the limited knowledge of the molecular drivers of tumor development and progression. Currently, molecular therapies are available mainly for the treatment of gastrointestinal stromal tumor, a soft-tissue malignancy characterized by an activating mutation of the tyrosine kinase KIT. Since the first application of this approach, a strong effort has been made to understand sarcoma molecular alterations that can be potential targets for therapy. The low incidence combined with the high level of histopathological heterogeneity makes the development of clinical trials for sarcomas very challenging. For this reason, preclinical studies are needed to better understand tumor biology with the aim to develop new targeted therapeutics. Currently, these studies are mainly based on in vitro testing, since cell lines, and in particular patient-derived models, represent a reliable and easy to handle tool for investigation. In the present review, we summarize the most important models currently available in the field, focusing in particular on the three-dimensional spheroid/organoid model. This innovative approach for studying tumor biology better represents tissue architecture and cell-cell as well as cell-microenvironment crosstalk, which are fundamental steps for tumor cell proliferation and survival.

8.
Oncotarget ; 8(30): 48534-48544, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28159918

RESUMO

INTRODUCTION: Recent studies indicated tumors may be comprised of heterogeneous molecular subtypes and incongruent molecular portraits may emerge if different areas of the tumor are sampled. This study explored the impact of intra-tumoral heterogeneity in terms of activation/phosphorylation of FDA approved drug targets and downstream kinase substrates. MATERIAL AND METHODS: Two independent sets of liver metastases from colorectal cancer were used to evaluate protein kinase-driven signaling networks within different areas using laser capture microdissection and reverse phase protein array. RESULTS: Unsupervised hierarchical clustering analysis indicated that the signaling architecture and activation of the MAPK and AKT-mTOR pathways were consistently maintained within different regions of the same biopsy. Intra-patient variability of the MAPK and AKT-mTOR pathway were <1.06 fold change, while inter-patients variability reached fold change values of 5.01. CONCLUSIONS: Protein pathway activation mapping of enriched tumor cells obtained from different regions of the same tumor indicated consistency and robustness independent of the region sampled. This suggests a dominant protein pathway network may be activated in a high percentage of the tumor cell population. Given the genomic intra-tumoral variability, our data suggest that protein/phosphoprotein signaling measurements should be integrated with genomic analysis for precision medicine based analysis.


Assuntos
Antineoplásicos , Descoberta de Drogas , Proteínas Quinases , Proteômica , Antineoplásicos/farmacologia , Análise por Conglomerados , Descoberta de Drogas/métodos , Humanos , Medicina de Precisão/métodos , Proteínas Quinases/metabolismo , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos
9.
Cell Syst ; 2(3): 159-71, 2016 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-27135362

RESUMO

Metformin is the most frequently prescribed drug for type 2 diabetes. In addition to its hypoglycemic effects, metformin also lowers cancer incidence. This anti-cancer activity is incompletely understood. Here, we profiled the metformin-dependent changes in the proteome and phosphoproteome of breast cancer cells using high-resolution mass spectrometry. In total, we quantified changes of 7,875 proteins and 15,813 phosphosites after metformin changes. To interpret these datasets, we developed a generally applicable strategy that overlays metformin-dependent changes in the proteome and phosphoproteome onto a literature-derived network. This approach suggested that metformin treatment makes cancer cells more sensitive to apoptotic stimuli and less sensitive to pro-growth stimuli. These hypotheses were tested in vivo; as a proof-of-principle, we demonstrated that metformin inhibits the p70S6K-rpS6 axis in a PP2A-phosphatase dependent manner. In conclusion, analysis of deep proteomics reveals both detailed and global mechanisms that contribute to the anti-cancer activity of metformin.


Assuntos
Neoplasias da Mama , Diabetes Mellitus Tipo 2 , Humanos , Hipoglicemiantes , Metformina , Proteômica
10.
PLoS One ; 10(8): e0136250, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26291325

RESUMO

INTRODUCTION: Metformin is proposed as adjuvant therapy in cancer treatment because of its ability to limit cancer incidence by negatively modulating the PI3K/AKT/mTOR pathway. In vitro, in addition to inhibiting cancer cell proliferation, metformin can also induce apoptosis. The molecular mechanism underlying this second effect is still poorly characterized and published data are often contrasting. We investigated how nutrient availability can modulate metformin-induced apoptosis in three breast cancer cell lines. MATERIAL AND METHODS: MCF7, SKBR3 and MDA-MB-231 cells were plated in MEM medium supplemented with increasing glucose concentrations or in DMEM medium and treated with 10 mM metformin. Cell viability was monitored by Trypan Blue assay and treatment effects on Akt/mTOR pathway and on apoptosis were analysed by Western Blot. Moreover, we determined the level of expression of pyruvate kinase M2 (PKM2), a well-known glycolytic enzyme expressed in cancer cells. RESULTS: Our results showed that metformin can induce apoptosis in breast cancer cells when cultured at physiological glucose concentrations and that the pro-apoptotic effect was completely abolished when cells were grown in high glucose/high amino acid medium. Induction of apoptosis was found to be dependent on AMPK activation but, at least partially, independent of TORC1 inactivation. Finally, we showed that, in nutrient-poor conditions, metformin was able to modulate the intracellular glycolytic equilibrium by downregulating PKM2 expression and that this mechanism was mediated by AMPK activation. CONCLUSION: We demonstrated that metformin induces breast cancer cell apoptosis and PKM2 downregulation only in nutrient-poor conditions. Not only glucose levels but also amino acid concentration can influence the observed metformin inhibitory effect on the mTOR pathway as well as its pro-apoptotic effect. These data demonstrate that the reduction of nutrient supply in tumors can increase metformin efficacy and that modulation of PKM2 expression/activity could be a promising strategy to boost metformin anti-cancer effect.


Assuntos
Adjuvantes Farmacêuticos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Piruvato Quinase/antagonistas & inibidores , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/enzimologia , Linhagem Celular Tumoral/metabolismo , Meios de Cultura , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Células MCF-7/efeitos dos fármacos , Células MCF-7/enzimologia , Células MCF-7/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
11.
Clin Exp Metastasis ; 30(3): 309-16, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23053743

RESUMO

The mechanism by which tissue microecology influences invasion and metastasis is largely unknown. Recent studies have indicated differences in the molecular architecture of the metastatic lesion compared to the primary tumor, however, systemic analysis of the alterations within the activated protein signaling network has not been described. Using laser capture microdissection, protein microarray technology, and a unique specimen collection of 34 matched primary colorectal cancers (CRC) and synchronous hepatic metastasis, the quantitative measurement of the total and activated/phosphorylated levels of 86 key signaling proteins was performed. Activation of the EGFR-PDGFR-cKIT network, in addition to PI3K/AKT pathway, was found uniquely activated in the hepatic metastatic lesions compared to the matched primary tumors. If validated in larger study sets, these findings may have potential clinical relevance since many of these activated signaling proteins are current targets for molecularly targeted therapeutics. Thus, these findings could lead to liver metastasis specific molecular therapies for CRC.


Assuntos
Neoplasias Colorretais/patologia , Proteínas de Neoplasias/metabolismo , Western Blotting , Neoplasias Colorretais/metabolismo , Progressão da Doença , Feminino , Humanos , Masculino , Metástase Neoplásica , Fosforilação , Análise Serial de Proteínas
12.
J Thorac Oncol ; 7(12): 1755-1766, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23154546

RESUMO

BACKGROUND: An understanding of the activated protein signaling architecture in non-small-cell lung cancer (NSCLC) is of critical importance to the development of new therapeutic approaches and identification of predictive and prognostic biomarkers for patient stratification. METHODS: We used reverse-phase protein microarrays to map the activated protein signaling networks of 47 NSCLC tumors, 28 of which were node negative, which were subjected to tumor cellular enrichment using laser capture microdissection. The phosphorylation/cleavage levels of 111 key signaling proteins and total levels of 17 proteins were measured for broadscale signaling analysis. RESULTS: Pathway activation mapping of NSCLC revealed distinct subgroups composed of epidermal growth factor receptor (ERBB1), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2), v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (ERBB3), v-erb-a erythroblastic leukemia viral oncogene homolog 4 (ERBB4), v-akt murine thymoma viral oncogene homolog 1- mammalian target of rapamycin (AKT-mTOR), protein kinase, AMP-activated, alpha 2 catalytic subunit (AMPK), and autophagy-related signaling, along with transforming growth factor-beta-signaling protein 1 (SMAD), insulin-line growth factor receptor (IGFR), rearranged during transfection proto-oncogene (RET), and activated CDC42-associated kinase (ACK) activation. Investigation of epidermal growth factor receptor (EGFR)-driven signaling identified a unique cohort of tumors with low EGFR protein expression yet high relative levels of phosphorylated EGFR and high EGFR total protein with low relative levels of phosphorylation. Last, mapping analysis of patients with NSCLC with N0 disease revealed a pilot pathway activation signature composed of linked epidermal growth factor receptor family (HER)-AMPK-AKT-mTOR signaling network along with focal adhesion kinase- LIM domain kinase-1 (FAK-LIMK) and janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathways that correlated with short-term survival and aggressive disease. CONCLUSIONS: Functional protein pathway activation mapping of NSCLC reveals distinct activation subgroups that are underpinned by important therapeutic targets and that patients with early-stage node negative disease and poor prognosis may be identified by activation of defined, biochemically linked protein signaling events. Such findings, if confirmed in larger study sets, could help select and stratify patients for personalized targeted therapies.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Pulmonares/metabolismo , Transdução de Sinais , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Receptores ErbB/metabolismo , Feminino , Humanos , Microdissecção e Captura a Laser , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Fosforilação , Prognóstico , Análise Serial de Proteínas , Proto-Oncogene Mas , Taxa de Sobrevida
13.
Phys Rev Lett ; 106(25): 251101, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21770624

RESUMO

I study the profile of the chameleon field around a radially pulsating mass. Focusing on the case in which the background (static) chameleon profile exhibits a thin shell, I add small perturbations to the source in the form of time-dependent radial pulsations. It is found that the chameleon field inherits a time dependence and there is a resultant scalar radiation from the region of the source. This has several interesting and potentially testable consequences.

14.
Lab Invest ; 90(5): 787-96, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20195244

RESUMO

Tissues are complex structures composed of different cell types, each of which present specific functions and characteristics. To better understand and measure the effect of tumor cell enrichment on protein pathway profiling and drug target activation measurements, the signaling activation portraits of laser capture microdissected (LCM) cancer epithelium and tumor stroma were compared with patient-matched whole-tissue specimens from 53 primary colorectal cancer samples. Microdissected material and whole-tissue lysate from contiguous cryostat sections were subjected to reverse-phase protein microarray analysis to determine the level of phopshorylation and expression of 75 different proteins known to be involved in cancer progression. The results revealed distinct differences in the protein activation portraits of cancer epithelium and stroma. Moreover, we found that the signaling activation profiles of the undissected whole-tissue specimens are profoundly different from the matched LCM material. Attempts to rescale the undissected pathway information based on percent endogenous tumor epithelium content were unsuccessful in recapitulating the LCM tumor epithelial signatures. Analysis of epidermal growth factor receptor phosphorylation and COX2 expression in these same sample sets revealed wholesale differences in the rank ordering of patient determination when LCM was compared with undissected samples. On the basis of these data, we conclude that accurate protein pathway activation status, which is under evaluation as a basis for patient selection and stratification for personalized therapy, must include upfront cellular-enrichment techniques such as LCM to generate accurate drug target activation status.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias/metabolismo , Proteínas/análise , Transdução de Sinais , Western Blotting , Análise por Conglomerados , Ciclo-Oxigenase 2/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Receptores ErbB/metabolismo , Humanos , Lasers , Análise em Microsséries/métodos , Microdissecção/métodos , Neoplasias/patologia , Fosforilação , Proteínas/classificação , Proteômica/métodos
15.
Mol Cell Proteomics ; 7(10): 1902-24, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18687633

RESUMO

Little is known about lung carcinoma epidermal growth factor (EGF) kinase pathway signaling within the context of the tissue microenvironment. We quantitatively profiled the phosphorylation and abundance of signal pathway proteins relevant to the EGF receptor within laser capture microdissected untreated, human non-small cell lung cancer (NSCLC) (n = 25) of known epidermal growth factor receptor (EGFR) tyrosine kinase domain mutation status. We measured six phosphorylation sites on EGFR to evaluate whether EGFR mutation status in vivo was associated with the coordinated phosphorylation of specific multiple phosphorylation sites on the EGFR and downstream proteins. Reverse phase protein array quantitation of NSCLC revealed simultaneous increased phosphorylation of EGFR residues Tyr-1148 (p < 0.044) and Tyr-1068 (p < 0.026) and decreased phosphorylation of EGFR Tyr-1045 (p < 0.002), HER2 Tyr-1248 (p < 0.015), IRS-1 Ser-612 (p < 0.001), and SMAD Ser-465/467 (p < 0.011) across all classes of mutated EGFR patient samples compared with wild type. To explore which subset of correlations was influenced by ligand induction versus an intrinsic phenotype of the EGFR mutants, we profiled the time course of 115 cellular signal proteins for EGF ligand-stimulated (three dosages) NSCLC mutant and wild type cultured cell lines. EGFR mutant cell lines (H1975 L858R) displayed a pattern of EGFR Tyr-1045 and HER2 Tyr-1248 phosphorylation similar to that found in tissue. Persistence of phosphorylation for AKT Ser-473 following ligand stimulation was found for the mutant. These data suggest that a higher proportion of the EGFR mutant carcinoma cells may exhibit activation of the phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (MTOR) pathway through Tyr-1148 and Tyr-1068 and suppression of IRS-1 Ser-612, altered heterodimerization with ERBB2, reduced response to transforming growth factor beta suppression, and reduced ubiquitination/degradation of the EGFR through EGFR Tyr-1045, thus providing a survival advantage. This is the first comparison of multiple, site-specific phosphoproteins with the EGFR tyrosine kinase domain mutation status in vivo.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Receptores ErbB/metabolismo , Lasers , Neoplasias Pulmonares/enzimologia , Microdissecção/métodos , Proteínas Mutantes/metabolismo , Análise Serial de Proteínas , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Análise por Conglomerados , Relação Dose-Resposta a Droga , Fator de Crescimento Epidérmico/farmacologia , Genoma Humano/genética , Humanos , Ligantes , Neoplasias Pulmonares/patologia , Mutação/genética , Fosforilação/efeitos dos fármacos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA