Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes Genomics ; 42(11): 1267-1279, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32949369

RESUMO

BACKGROUND: Reactive oxygen species (ROS) generation specifically in cancer cells may be a promising strategy for their selective killing. The synthetic chalcone derivative (E)-3-(3,5-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (DPP23) exerts antitumor activity through ROS-mediated apoptosis in cancer cells but not in healthy cells. However, the mechanism underlying ROS generation by DPP23 remains unknown. OBJECTIVE: The current study aims to identify possible DPP23 target genes responsible for ROS generation through the mining of microarray data stored in NCBI's Gene Expression Omnibus (GEO). METHODS: A comprehensive expression profile of genes modulated by DPP23 was examined by gene ontology analysis. DPP23-modulated genes in Mia-PaCa2 pancreatic cells were validated by reverse transcription-PCR. RESULTS: Multiple genes were up and downregulated by DPP23 treatment in MiaPaCa2 pancreatic cancer cells. Genes with absolute fold-change (FC) of > 2 were selected as the cut-off criteria and grouped into 10 clusters to analyze expression patterns systematically. We observed that genes with increased expression at 6 h were significantly affected by ROS increase, unfolded protein response, and cell death. Expression of 13 genes involved in glutathione metabolism, including CHAC1, GCLC, G6PD, GSTO2, GSTA5, GSTM2, GSR, GPX3/6/8, GGT1, PGD, ATF4, and NAT8B, are modulated by DPP23. Of these, CHAC1 was most highly upregulated upon DPP23 treatment. CONCLUSION: DPP23 alters global gene expression associated with multiple cellular responses, including oxidative stress and apoptosis. We found that DPP23 may induce GSH depletion through modulation of gene expression, which is especially involved in glutathione metabolism. Of these, CHAC1 emerged as the most prominent candidate for DPP23 as it was the most responsive to DPP23 treatment.


Assuntos
Chalconas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Transcriptoma/genética , gama-Glutamilciclotransferase/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Proteínas de Neoplasias/classificação , Proteínas de Neoplasias/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA