Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Refract Surg ; 38(9): 587-594, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36098390

RESUMO

PURPOSE: To assess whether aqueous cytokine profiles and pupil size are altered when high capsulotomy energy is used in eyes undergoing femtosecond laser-assisted cataract surgery (FLACS), and if preoperative use of a topical non-steroidal anti-inflammatory drug (NSAID) has an effect on this. METHODS: This prospective study recruited 83 eyes (63 patients) that were allocated to four treatment groups: conventional phacoemulsification (n = 20 eyes); FLACS with 90% capsulotomy energy without NSAID pretreatment (n = 20 eyes); FLACS with 90% capsulotomy energy with NSAID pre-treatment (n = 21 eyes); and FLACS with 150% capsulotomy energy with NSAID pretreatment (n = 22 eyes). Aqueous humor was collected before and after phacoemulsification to assess cytokine profiles. Pupil size was measured before and after laser capsulotomy. RESULTS: FLACS increased aqueous concentrations of pros-taglandin E2 (PGE2), interferon γ (IFN-γ), and interleukin 6 (IL-6) compared to conventional phacoemulsification. However, when increasing capsulotomy energy from 90% to 150% (with topical NSAID pretreatment), there was no significant increase in aqueous concentrations of PGE2 (37.7 ± 21.7 vs 33.6 ± 27.6 pg/mL, P = .99), IFN-γ (3.6 ± 1.1 vs 3.6 ± 0.8 pg/mL, P = .99), or IL-6 (7.1 ± 2.9 vs 6.3 ± 2.4 pg/mL, P = .99). For 90% and 150% capsulotomy energy, there was significant miosis following laser capsulotomy. Increased PGE2 concentration was significantly correlated with a reduction in pupil area (r = -0.58, P < .001) and pupil diameter (r = -0.57, P < .001). However, when a topical NSAID was given preoperatively, there was no difference in the degree of miosis between the 90% and 150% capsulotomy energy groups. CONCLUSIONS: Pretreatment with a topical NSAID prevented a rise in PGE2, IFN-γ, and IL-6 levels and excessive miosis when a higher capsulotomy energy was used. When a topical NSAID is used preoperatively, it is safe to use higher capsulotomy energy settings (with a low pulse energy femtosecond laser system) to achieve a satisfactory capsulotomy. [J Refract Surg. 2022;38(9):587-594.].


Assuntos
Catarata , Terapia a Laser , Anti-Inflamatórios não Esteroides/uso terapêutico , Catarata/etiologia , Humanos , Interleucina-6/farmacologia , Terapia a Laser/efeitos adversos , Lasers , Miose , Estudos Prospectivos , Prostaglandinas E/farmacologia , Pupila
2.
Proteomics ; 7(22): 4112-22, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17952876

RESUMO

GTPase ras-related C3 botulinum toxin substrate 1 (Rac1) plays a role in various cellular processes pertinent to cancer development. In the present study, we investigated the molecular mechanisms underlying apoptosis regulation by Rac1 through functional proteomic analysis of three human melanoma M14 cell lines stably transfected with constitutively active Rac1V12, dominant negative Rac1N17, and empty vector (pIRES), respectively. We found that paclitaxel evoked apoptosis in the melanoma cell lines through the intrinsic (mitochondria) pathway in a caspsae-3-dependent manner. Compared to the Rac1pIRES and Rac1V12 cells, Rac1N17 cells were more resistant to paclitaxel-triggered caspase-3 activation and apoptosis. Protein composition comparisons amongst the three cell lines identified two peptide spots of interest. One was Hsp27, which was upregulated in Rac1N17 cells as assessed in our gel image interpretation, PMF and Western blot analysis. The other was identified as SR-25 protein (also known as the ADP-ribosylation factor-like factor 6-interacting protein 4; ARL6IP4) using PMF, which was separated only from the Rac1N17 cells under the experimental conditions. Moreover, knockdown of the protein level of Hsp27 using small interfering RNA in Rac1N17 cells significantly increased the paclitaxel-elicited caspase-3 activation and apoptosis. In conclusion, our results implicate that Hsp27 and SR-25 are mediators in Rac1 signaling pathway(s). It appears that the dominant negative Rac1N17 reduces the apoptosis sensitivity toward paclitaxel in the melanoma cells through upregulation of Hsp27, which inhibits its down stream drug-elicited caspase-3 activation.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Melanoma/metabolismo , Paclitaxel/farmacologia , Proteômica , Proteínas rac1 de Ligação ao GTP/análise , Proteínas rac1 de Ligação ao GTP/metabolismo , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Eletroforese em Gel Bidimensional/métodos , Genes Dominantes , Proteínas de Choque Térmico/efeitos dos fármacos , Humanos , Melanoma/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peptídeos/análise , Sensibilidade e Especificidade , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA