Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Basic Clin Pharmacol Toxicol ; 122(4): 413-423, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29067765

RESUMO

Snake venom phospholipases A2 (PLA2 s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA2 homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA2 s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 µg/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA2 from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.


Assuntos
Antibacterianos/farmacologia , Venenos de Crotalídeos/enzimologia , Fosfolipases A2/química , Viperidae , Animais , Antibacterianos/síntese química , Cromatografia em Gel/métodos , Cromatografia de Fase Reversa/métodos , Venenos de Crotalídeos/química , Desenho de Fármacos , Ensaios Enzimáticos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/farmacologia , Fosfolipases A2/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos
2.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;24: 1-6, 2018. ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484738

RESUMO

Background: Wasp venoms constitute a molecular reservoir of new pharmacological substances such as peptides and proteins, biological property holders, many of which are yet to be identified. Exploring these sources may lead to the discovery of molecules hitherto unknown. This study describes, for the first time in hymenopteran venoms, the identification of an enzymatically inactive phospholipase A2 (PLA2) from the venom of the social wasp Polybia occidentalis. Methods: P. occidentalis venom was fractioned by molecular exclusion and reverse phase chromatography. For the biochemical characterization of the protein, 1D and 2D SDS-PAGE were performed, along with phospholipase activity assays on synthetic substrates, MALDI-TOF mass spectrometry and sequencing by Edman degradation. Results: The protein, called PocTX, was isolated using two chromatographic steps. Based on the phospholipase activity assay, electrophoresis and mass spectrometry, the protein presented a high degree of purity, with a mass of 13,896. 47 Da and a basic pI. After sequencing by the Edman degradation method, it was found that the protein showed a high identity with snake venom PLA2 homologues. Conclusion: This is the first report of an enzymatically inactive PLA2 isolated from wasp venom, similar to snake PLA2 homologues.


Assuntos
Animais , /isolamento & purificação , /química , Venenos de Vespas , Vespas/enzimologia
3.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;24: 5, 2018. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-894164

RESUMO

Wasp venoms constitute a molecular reservoir of new pharmacological substances such as peptides and proteins, biological property holders, many of which are yet to be identified. Exploring these sources may lead to the discovery of molecules hitherto unknown. This study describes, for the first time in hymenopteran venoms, the identification of an enzymatically inactive phospholipase A2 (PLA2) from the venom of the social wasp Polybia occidentalis. Methods: P. occidentalis venom was fractioned by molecular exclusion and reverse phase chromatography. For the biochemical characterization of the protein, 1D and 2D SDS-PAGE were performed, along with phospholipase activity assays on synthetic substrates, MALDI-TOF mass spectrometry and sequencing by Edman degradation. Results: The protein, called PocTX, was isolated using two chromatographic steps. Based on the phospholipase activity assay, electrophoresis and mass spectrometry, the protein presented a high degree of purity, with a mass of 13,896. 47 Da and a basic pI. After sequencing by the Edman degradation method, it was found that the protein showed a high identity with snake venom PLA2 homologues. Conclusion: This is the first report of an enzymatically inactive PLA2 isolated from wasp venom, similar to snake PLA2 homologues.(AU)


Assuntos
Animais , Vespas , Receptores da Fosfolipase A2/isolamento & purificação , Receptores da Fosfolipase A2/química , Intoxicação , Espectrometria de Massas/métodos , Receptores da Fosfolipase A2/química , Cromatografia de Fase Reversa/métodos
4.
Curr Pharm Biotechnol ; 17(14): 1201-1212, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27604356

RESUMO

Cancer, a disease that currently affects approximately 14 million people, is characterized by abnormal cell growth with altered replication capacity, which leads to the development of tumor masses without apoptotic control. Resistance to the drugs used in chemotherapy and their side effects stimulate scientific research seeking new therapies to combat this disease. Molecules from flora and fauna with cytotoxic activity against tumor cells have been studied for their potential to become a source of pharmaceutical agents. In this regard, snake venoms have a variety of proteins and peptides that have proven biotechnological potential. In several studies, antibacterial action and antitumor activity have been observed. One of the most widely studied venom components are phospholipases A2. Snake venom phospholipases A2 (svPLA2s) comprise a large class of molecules that catalyze the hydrolysis of the sn-2 position of phospholipids releasing fatty acids and lysophospholipids and are related to a broad spectrum of biotechnological activities. In addition to their specific cytotoxicity against some tumor cell lines, inhibitory activity of angiogenesis, adhesion and cell migration has been described. The antitumor activity of svPLA2s was observed both in vitro and in vivo, but little is known about the mechanism of action of these proteins in promoting this activity. In this review, the main structural and functional characteristics of svPLA2s are discussed, along with the mechanisms proposed, thus far, to explain their antitumor activity, targeting their potential use as a therapeutic alternative against cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/patologia , Peptídeos/farmacologia , Fosfolipases A2/metabolismo , Venenos de Serpentes/enzimologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Peptídeos/síntese química
5.
Biomed Res Int ; 2014: 920942, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971359

RESUMO

In this paper, we describe the purification/characterization of BmooAi, a new toxin from Bothrops moojeni that inhibits platelet aggregation. The purification of BmooAi was carried out through three chromatographic steps (ion-exchange on a DEAE-Sephacel column, molecular exclusion on a Sephadex G-75 column, and reverse-phase HPLC chromatography on a C2/C18 column). BmooAi was homogeneous by SDS-PAGE and shown to be a single-chain protein of 15,000 Da. BmooAi was analysed by MALDI-TOF Spectrometry and revealed two major components with molecular masses 7824.4 and 7409.2 as well as a trace of protein with a molecular mass of 15,237.4 Da. Sequencing of BmooAi by Edman degradation showed two amino acid sequences: IRDFDPLTNAPENTA and ETEEGAEEGTQ, which revealed no homology to any known toxin from snake venom. BmooAi showed a rather specific inhibitory effect on platelet aggregation induced by collagen, adenosine diphosphate, or epinephrine in human platelet-rich plasma in a dose-dependent manner, whereas it had little or no effect on platelet aggregation induced by ristocetin. The effect on platelet aggregation induced by BmooAi remained active even when heated to 100°C. BmooAi could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Bovinos , Cromatografia por Troca Iônica , Colágeno/farmacologia , Venenos de Crotalídeos/química , Epinefrina/farmacologia , Humanos , Dados de Sequência Molecular , Peso Molecular , Inibidores da Agregação Plaquetária/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA