Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Heliyon ; 7(8): e07779, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34458617

RESUMO

The localization and quantification of endothelial progenitor cells (EPCs) are controversial. Circulating CD34 + cells in blood have been identified as EPCs and as biomarkers of cardiovascular disease. We discuss in this paper the current data describing differential phenotype and behavior in vitro of CD34 positive cells from the circulation and adipose tissue (AT). We also describe in brief our own findings from CD34 + cells isolated from leukopheresis cones derived from healthy platelet donors and from patients undergoing bariatric surgery. We conclude that CD34 + cells in blood and in AT are different in antigenic profile and behavior in culture. The findings described assert that CD34 + cells detected in blood previously identified as biomarkers of cardiovascular disease are predominantly HPCs rather than EPCs, and that true CD34 + EPCs can be readily identified and extracted from AT, supportive of the current evidence which suggests EPCs are resident in the tissue vasculature.

2.
Eur J Heart Fail ; 23(4): 661-674, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33811444

RESUMO

AIMS: CONCERT-HF is an NHLBI-sponsored, double-blind, placebo-controlled, Phase II trial designed to determine whether treatment with autologous bone marrow-derived mesenchymal stromal cells (MSCs) and c-kit positive cardiac cells (CPCs), given alone or in combination, is feasible, safe, and beneficial in patients with heart failure (HF) caused by ischaemic cardiomyopathy. METHODS AND RESULTS: Patients were randomized (1:1:1:1) to transendocardial injection of MSCs combined with CPCs, MSCs alone, CPCs alone, or placebo, and followed for 12 months. Seven centres enrolled 125 participants with left ventricular ejection fraction of 28.6 ± 6.1% and scar size 19.4 ± 5.8%, in New York Heart Association class II or III. The proportion of major adverse cardiac events (MACE) was significantly decreased by CPCs alone (-22% vs. placebo, P = 0.043). Quality of life (Minnesota Living with Heart Failure Questionnaire score) was significantly improved by MSCs alone (P = 0.050) and MSCs + CPCs (P = 0.023) vs. placebo. Left ventricular ejection fraction, left ventricular volumes, scar size, 6-min walking distance, and peak oxygen consumption did not differ significantly among groups. CONCLUSIONS: This is the first multicentre trial assessing CPCs and a combination of two cell types from different tissues in HF patients. The results show that treatment is safe and feasible. Even with maximal guideline-directed therapy, both CPCs and MSCs were associated with improved clinical outcomes (MACE and quality of life, respectively) in ischaemic HF without affecting left ventricular function or structure, suggesting possible systemic or paracrine cellular mechanisms. Combining MSCs with CPCs was associated with improvement in both these outcomes. These results suggest potential important beneficial effects of CPCs and MSCs and support further investigation in HF patients.


Assuntos
Insuficiência Cardíaca , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Minnesota , Qualidade de Vida , Volume Sistólico , Resultado do Tratamento , Função Ventricular Esquerda
3.
PLoS One ; 15(8): e0237401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841277

RESUMO

Implantation of bone marrow-derived cells (BMCs) into mouse hearts post-myocardial infarction (MI) limits cardiac functional decline. However, clinical trials of post-MI BMC therapy have yielded conflicting results. While most laboratory experiments use healthy BMC donor mice, clinical trials use post-MI autologous BMCs. Post-MI mouse BMCs are therapeutically impaired, due to inflammatory changes in BMC composition. Thus, therapeutic efficacy of the BMCs progressively worsens after MI but recovers as donor inflammatory response resolves. The availability of post-MI patient BM mononuclear cells (MNCs) from the TIME and LateTIME clinical trials enabled us to test if human post-MI MNCs undergo a similar period of impaired efficacy. We hypothesized that MNCs from TIME trial patients would be less therapeutic than healthy human donor MNCs when implanted into post-MI mouse hearts, and that therapeutic properties would be restored in MNCs from LateTIME trial patients. Post-MI SCID mice received MNCs from healthy donors, TIME patients, or LateTIME patients. Cardiac function improved considerably in the healthy donor group, but neither the TIME nor LateTIME group showed therapeutic effect. Conclusion: post-MI human MNCs lack therapeutic benefits possessed by healthy MNCs, which may partially explain why BMC clinical trials have been less successful than mouse studies.


Assuntos
Transplante de Medula Óssea , Ensaios Clínicos como Assunto , Infarto do Miocárdio/terapia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Infarto do Miocárdio/genética , Resultado do Tratamento
4.
JACC CardioOncol ; 2(4): 581-595, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33403362

RESUMO

BACKGROUND: Anthracycline-induced cardiomyopathy (AIC) may be irreversible with a poor prognosis, disproportionately affecting women and young adults. Administration of allogeneic bone marrow-derived mesenchymal stromal cells (allo-MSCs) is a promising approach to heart failure (HF) treatment. OBJECTIVES: SENECA (Stem Cell Injection in Cancer Survivors) was a phase 1 study of allo-MSCs in AIC. METHODS: Cancer survivors with chronic AIC (mean age 56.6 years; 68% women; NT-proBNP 1,426 pg/ml; 6 enrolled in an open-label, lead-in phase and 31 subjects randomized 1:1) received 1 × 108 allo-MSCs or vehicle transendocardially. Primary objectives were safety and feasibility. Secondary efficacy measures included cardiac function and structure measured by cardiac magnetic resonance imaging (CMR), functional capacity, quality of life (Minnesota Living with Heart Failure Questionnaire), and biomarkers. RESULTS: A total of 97% of subjects underwent successful study product injections; all allo-MSC-assigned subjects received the target dose of cells. Follow-up visits were well-attended (92%) with successful collection of endpoints in 94% at the 1-year visit. Although 58% of subjects had non-CMR compatible devices, CMR endpoints were successfully collected in 84% of subjects imaged at 1 year. No new tumors were reported. There were no significant differences between allo-MSC and vehicle groups with regard to clinical outcomes. Secondary measures included 6-min walk test (p = 0.056) and Minnesota Living with Heart Failure Questionnaire score (p = 0.048), which tended to favor the allo-MSC group. CONCLUSIONS: In this first-in-human study of cell therapy in patients with AIC, transendocardial administration of allo-MSCs appears safe and feasible, and CMR was successfully performed in the majority of the HF patients with devices. This study lays the groundwork for phase 2 trials aimed at assessing efficacy of cell therapy in patients with AIC.

5.
Sci Rep ; 9(1): 7286, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086203

RESUMO

The cellular origins of vasa vasorum are ill-defined and may involve circulating or local progenitor cells. We previously discovered that murine aortic adventitia contains Sca-1+CD45+ progenitors that produce macrophages. Here we investigated whether they are also vasculogenic. In aortas of C57BL/6 mice, Sca-1+CD45+ cells were localised to adventitia and lacked surface expression of endothelial markers (<1% for CD31, CD144, TIE-2). In contrast, they did show expression of CD31, CD144, TIE-2 and VEGFR2 in atherosclerotic ApoE-/- aortas. Although Sca-1+CD45+ cells from C57BL/6 aorta did not express CD31, they formed CD31+ colonies in endothelial differentiation media and produced interconnecting vascular-like cords in Matrigel that contained both endothelial cells and a small population of macrophages, which were located at branch points. Transfer of aortic Sca-1+CD45+ cells generated endothelial cells and neovessels de novo in a hindlimb model of ischaemia and resulted in a 50% increase in perfusion compared to cell-free control. Similarly, their injection into the carotid adventitia of ApoE-/- mice produced donor-derived adventitial and peri-adventitial microvessels after atherogenic diet, suggestive of newly formed vasa vasorum. These findings show that beyond its content of macrophage progenitors, adventitial Sca-1+CD45+ cells are also vasculogenic and may be a source of vasa vasorum during atherogenesis.


Assuntos
Aterosclerose/patologia , Diferenciação Celular , Neovascularização Patológica/patologia , Células-Tronco/fisiologia , Vasa Vasorum/patologia , Túnica Adventícia/citologia , Túnica Adventícia/patologia , Animais , Antígenos Ly/metabolismo , Aorta/citologia , Aorta/patologia , Aterosclerose/etiologia , Dieta Aterogênica , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Feminino , Humanos , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/fisiologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout para ApoE , Neovascularização Patológica/etiologia , Vasa Vasorum/citologia
6.
Sci Rep ; 8(1): 13948, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224726

RESUMO

Renal artery stenosis (RAS) caused by narrowing of arteries is characterized by microvascular damage. Macrophages are implicated in repair and injury, but the specific populations responsible for these divergent roles have not been identified. Here, we characterized murine kidney F4/80+CD64+ macrophages in three transcriptionally unique populations. Using fate-mapping and parabiosis studies, we demonstrate that CD11b/cint are long-lived kidney-resident (KRM) while CD11chiMϕ, CD11cloMϕ are monocyte-derived macrophages. In a murine model of RAS, KRM self-renewed, while CD11chiMϕ and CD11cloMϕ increased significantly, which was associated with loss of peritubular capillaries. Replacing the native KRM with monocyte-derived KRM using liposomal clodronate and bone marrow transplantation followed by RAS, amplified loss of peritubular capillaries. To further elucidate the nature of interactions between KRM and peritubular endothelial cells, we performed RNA-sequencing on flow-sorted macrophages from Sham and RAS kidneys. KRM showed a prominent activation pattern in RAS with significant enrichment in reparative pathways, like angiogenesis and wound healing. In culture, KRM increased proliferation of renal peritubular endothelial cells implying direct pro-angiogenic properties. Human homologs of KRM identified as CD11bintCD11cintCD68+ increased in post-stenotic kidney biopsies from RAS patients compared to healthy human kidneys, and inversely correlated to kidney function. Thus, KRM may play protective roles in stenotic kidney injury through expansion and upregulation of pro-angiogenic pathways.


Assuntos
Rim/patologia , Monócitos/patologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígeno CD11c/metabolismo , Ácido Clodrônico/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Rim/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Fosfolipídeos/metabolismo
7.
Am Heart J ; 201: 54-62, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29910056

RESUMO

OBJECTIVES: SENECA (StEm cell iNjECtion in cAncer survivors) is a phase I, randomized, double-blind, placebo-controlled study to evaluate the safety and feasibility of delivering allogeneic mesenchymal stromal cells (allo-MSCs) transendocardially in subjects with anthracycline-induced cardiomyopathy (AIC). BACKGROUND: AIC is an incurable and often fatal syndrome, with a prognosis worse than that of ischemic or nonischemic cardiomyopathy. Recently, cell therapy with MSCs has emerged as a promising new approach to repair damaged myocardium. METHODS: The study population is 36 cancer survivors with a diagnosis of AIC, left ventricular (LV) ejection fraction ≤40%, and symptoms of heart failure (NYHA class II-III) on optimally-tolerated medical therapy. Subjects must be clinically free of cancer for at least two years with a ≤ 30% estimated five-year risk of recurrence. The first six subjects participated in an open-label, lead-in phase and received 100 million allo-MSCs; the remaining 30 will be randomized 1:1 to receive allo-MSCs or vehicle via 20 transendocardial injections. Efficacy measures (obtained at baseline, 6 months, and 12 months) include MRI evaluation of LV function, LV volumes, fibrosis, and scar burden; assessment of exercise tolerance (six-minute walk test) and quality of life (Minnesota Living with Heart Failure Questionnaire); clinical outcomes (MACE and cumulative days alive and out of hospital); and biomarkers of heart failure (NT-proBNP). CONCLUSIONS: This is the first clinical trial using direct cardiac injection of cells for the treatment of AIC. If administration of allo-MSCs is found feasible and safe, SENECA will pave the way for larger phase II/III studies with therapeutic efficacy as the primary outcome.


Assuntos
Antraciclinas/efeitos adversos , Sobreviventes de Câncer/estatística & dados numéricos , Insuficiência Cardíaca/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Neoplasias/tratamento farmacológico , Qualidade de Vida , Função Ventricular Esquerda/fisiologia , Adolescente , Adulto , Idoso , Antraciclinas/uso terapêutico , Método Duplo-Cego , Estudos de Viabilidade , Feminino , Seguimentos , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Transplante Autólogo , Resultado do Tratamento , Adulto Jovem
8.
Circ Res ; 122(12): 1703-1715, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29703749

RESUMO

RATIONALE: Autologous bone marrow mesenchymal stem cells (MSCs) and c-kit+ cardiac progenitor cells (CPCs) are 2 promising cell types being evaluated for patients with heart failure (HF) secondary to ischemic cardiomyopathy. No information is available in humans about the relative efficacy of MSCs and CPCs and whether their combination is more efficacious than either cell type alone. OBJECTIVE: CONCERT-HF (Combination of Mesenchymal and c-kit+ Cardiac Stem Cells As Regenerative Therapy for Heart Failure) is a phase II trial aimed at elucidating these issues by assessing the feasibility, safety, and efficacy of transendocardial administration of autologous MSCs and CPCs, alone and in combination, in patients with HF caused by chronic ischemic cardiomyopathy (coronary artery disease and old myocardial infarction). METHODS AND RESULTS: Using a randomized, double-blinded, placebo-controlled, multicenter, multitreatment, and adaptive design, CONCERT-HF examines whether administration of MSCs alone, CPCs alone, or MSCs+CPCs in this population alleviates left ventricular remodeling and dysfunction, reduces scar size, improves quality of life, or augments functional capacity. The 4-arm design enables comparisons of MSCs alone with CPCs alone and with their combination. CONCERT-HF consists of 162 patients, 18 in a safety lead-in phase (stage 1) and 144 in the main trial (stage 2). Stage 1 is complete, and stage 2 is currently randomizing patients from 7 centers across the United States. CONCLUSIONS: CONCERT-HF will provide important insights into the potential therapeutic utility of MSCs and CPCs, given alone and in combination, for patients with HF secondary to ischemic cardiomyopathy. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02501811.


Assuntos
Insuficiência Cardíaca/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Miócitos Cardíacos/citologia , Transplante de Células-Tronco/métodos , Terapia Combinada/métodos , Método Duplo-Cego , Estudos de Viabilidade , Insuficiência Cardíaca/etiologia , Humanos , Isquemia Miocárdica/complicações , Miócitos Cardíacos/química , Proteínas Proto-Oncogênicas c-kit , Projetos de Pesquisa , Transplante Autólogo , Resultado do Tratamento , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/terapia , Remodelação Ventricular
9.
Circ Res ; 122(3): 479-488, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29208679

RESUMO

RATIONALE: The TIME trial (Timing in Myocardial Infarction Evaluation) was the first cell therapy trial sufficiently powered to determine if timing of cell delivery after ST-segment-elevation myocardial infarction affects recovery of left ventricular (LV) function. OBJECTIVE: To report the 2-year clinical and cardiac magnetic resonance imaging results and their modification by microvascular obstruction. METHODS AND RESULTS: TIME was a randomized, double-blind, placebo-controlled trial comparing 150 million bone marrow mononuclear cells versus placebo in 120 patients with anterior ST-segment-elevation myocardial infarctions resulting in LV dysfunction. Primary end points included changes in global (LV ejection fraction) and regional (infarct and border zone) function. Secondary end points included changes in LV volumes, infarct size, and major adverse cardiac events. Here, we analyzed the continued trajectory of these measures out to 2 years and the influence of microvascular obstruction present at baseline on these long-term outcomes. At 2 years (n=85), LV ejection fraction was similar in the bone marrow mononuclear cells (48.7%) and placebo groups (51.6%) with no difference in regional LV function. Infarct size and LV mass decreased ≥30% in each group at 6 months and declined gradually to 2 years. LV volumes increased ≈10% at 6 months and remained stable to 2 years. Microvascular obstruction was present in 48 patients at baseline and was associated with significantly larger infarct size (56.5 versus 36.2 g), greater adverse LV remodeling, and marked reduction in LV ejection fraction recovery (0.2% versus 6.2%). CONCLUSIONS: In one of the longest serial cardiac magnetic resonance imaging analyses of patients with large anterior ST-segment-elevation myocardial infarctions, bone marrow mononuclear cells administration did not improve recovery of LV function over 2 years. Microvascular obstruction was associated with reduced recovery of LV function, greater adverse LV remodeling, and more device implantations. The use of cardiac magnetic resonance imaging leads to greater dropout of patients over time because of device implantation in patients with more severe LV dysfunction resulting in overestimation of clinical stability of the cohort. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00684021.


Assuntos
Transplante de Medula Óssea/métodos , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Disfunção Ventricular Esquerda/terapia , Adulto , Idoso , Método Duplo-Cego , Feminino , Seguimentos , Ventrículos do Coração/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Microcirculação , Pessoa de Meia-Idade , Tamanho do Órgão , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia , Volume Sistólico , Fatores de Tempo , Disfunção Ventricular Esquerda/etiologia
10.
PLoS One ; 12(8): e0181614, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28763463

RESUMO

Current research on valvular heart repair has focused on tissue-engineered heart valves (TEHV) because of its potential to grow similarly to native heart valves. Decellularized xenografts are a promising solution; however, host recellularization remains challenging. In this study, decellularized porcine aortic valves were implanted into the right ventricular outflow tract (RVOT) of sheep to investigate recellularization potential. Porcine aortic valves, decellularized with sodium dodecyl sulfate (SDS), were sterilized by supercritical carbon dioxide (scCO2) and implanted into the RVOT of five juvenile polypay sheep for 5 months (n = 5). During implantation, functionality of the valves was assessed by serial echocardiography, blood tests, and right heart pulmonary artery catheterization measurements. The explanted valves were characterized through gross examination, mechanical characterization, and immunohistochemical analysis including cell viability, phenotype, proliferation, and extracellular matrix generation. Gross examination of the valve cusps demonstrated the absence of thrombosis. Bacterial and fungal stains were negative for pathogenic microbes. Immunohistochemical analysis showed the presence of myofibroblast-like cell infiltration with formation of new collagen fibrils and the existence of an endothelial layer at the surface of the explant. Analysis of cell phenotype and morphology showed no lymphoplasmacytic infiltration. Tensile mechanical testing of valve cusps revealed an increase in stiffness while strength was maintained during implantation. The increased tensile stiffness confirms the recellularization of the cusps by collagen synthesizing cells. The current study demonstrated the feasibility of the trans-species implantation of a non-fixed decellularized porcine aortic valve into the RVOT of sheep. The implantation resulted in recellularization of the valve with sufficient hemodynamic function for the 5-month study. Thus, the study supports a potential role for use of a TEHV for the treatment of valve disease in humans.


Assuntos
Valva Aórtica/patologia , Próteses Valvulares Cardíacas , Ventrículos do Coração/patologia , Animais , Valva Aórtica/cirurgia , Fenômenos Biomecânicos , Dióxido de Carbono/química , Proliferação de Células , Sobrevivência Celular , Ecocardiografia , Matriz Extracelular/metabolismo , Feminino , Ventrículos do Coração/cirurgia , Hemodinâmica , Humanos , Masculino , Fenótipo , Desenho de Prótese , Valva Pulmonar/patologia , Ovinos , Suínos , Resistência à Tração , Engenharia Tecidual/métodos , Transplante Heterólogo
11.
J Cardiothorac Surg ; 12(1): 56, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716099

RESUMO

BACKGROUND: The xenoantigenicity of porcine bioprosthetic valves is implicated as an etiology leading to calcification and subsequent valve failure. Decellularization of porcine valves theoretically could erase the antigenicity of the tissue leading to more durable prosthetic valves, but the effectiveness of decellularization protocols in regard to completely removing antigens has yet to be verified. Our hypothesis was that decellularization would remove the more abundant α-gal antigens but not remove all the non α-gal antigens, which could mount a response. METHODS: Porcine aortic valves were decellularized with 1% sodium dodecyl sulfate for 4 days. Decellularized cusps were evaluated for α-gal epitopes by ELISA. To test for non α-gal antigens, valves were implanted into sheep. Serum was obtained from the sheep preoperatively and 1 week, 1 month, and 2 months postoperatively. This serum was utilized for anti-porcine antibody staining and for quantification of anti-pig IgM and IgG antibodies and complement. RESULTS: Decellularized porcine cusps had 2.8 ± 2.0% relative α-gal epitope as compared to fresh porcine aortic valve cusps and was not statistically significantly different (p = 0.4) from the human aortic valve cusp which had a 2.0 ± 0.4% relative concentration. Anti-pig IgM and IgG increased postoperatively from baseline levels. Preoperatively anti-pig IgM was 27.7 ± 1.7 µg/mL and it increased to 71.9 ± 12.1 µg/mL average of all time points postoperatively (p = 0.04). Preoperatively anti-pig IgG in sheep serum was 44.9 ± 1.5 µg/mL and it increased to 72.6 ± 6.0 µg/mL average of all time points postoperatively (p = 0.01). There was a statistically significant difference (p = 0.00007) in the serum C1q concentration before valve implantation (2.5 ± 0.2 IU/mL) and at averaged time points after valve implantation (5.3 ± 0.3 IU/mL). CONCLUSIONS: Decellularization with 1% sodium dodecyl sulfate does not fully eliminate non α-gal antigens; however, significant reduction in α-gal presence on decellularized cusps was observed. Clinical implications of the non α-gal antigenic response are yet to be determined. As such, evaluation of any novel decellularized xenografts must include rigorous antigen testing prior to human trials.


Assuntos
Valva Aórtica/cirurgia , Bioprótese , Calcinose/imunologia , Doença Enxerto-Hospedeiro/imunologia , Doenças das Valvas Cardíacas/cirurgia , Próteses Valvulares Cardíacas , Imunidade Humoral , Animais , Bioprótese/efeitos adversos , Calcinose/etiologia , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/complicações , Falha de Prótese , Ovinos , Sus scrofa , Suínos , Transplante Heterólogo
12.
Am Heart J ; 179: 142-50, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27595689

RESUMO

BACKGROUND: Although several preclinical studies have shown that bone marrow cell (BMC) transplantation promotes cardiac recovery after myocardial infarction, clinical trials with unfractionated bone marrow have shown variable improvements in cardiac function. METHODS: To determine whether in a population of post-myocardial infarction patients, functional recovery after BM transplant is associated with specific BMC subpopulation, we examined the association between BMCs with left ventricular (LV) function in the LateTIME-CCTRN trial. RESULTS: In this population, we found that older individuals had higher numbers of BM CD133(+) and CD3(+) cells. Bone marrow from individuals with high body mass index had lower CD45(dim)/CD11b(dim) levels, whereas those with hypertension and higher C-reactive protein levels had higher numbers of CD133(+) cells. Smoking was associated with higher levels of CD133(+)/CD34(+)/VEGFR2(+) cells and lower levels of CD3(+) cells. Adjusted multivariate analysis indicated that CD11b(dim) cells were negatively associated with changes in LV ejection fraction and wall motion in both the infarct and border zones. Change in LV ejection fraction was positively associated with CD133(+), CD34(+), and CD45(+)/CXCR4(dim) cells as well as faster BMC growth rates in endothelial colony forming assays. CONCLUSIONS: In the LateTIME population, BM composition varied with patient characteristics and treatment. Irrespective of cell therapy, recovery of LV function was greater in patients with greater BM abundance of CD133(+) and CD34(+) cells and worse in those with higher levels of CD11b(dim) cells. Bone marrow phenotype might predict clinical response before BMC therapy and administration of selected BM constituents could potentially improve outcomes of other future clinical trials.


Assuntos
Transplante de Medula Óssea , Infarto do Miocárdio/terapia , Recuperação de Função Fisiológica , Disfunção Ventricular Esquerda/terapia , Antígeno AC133/metabolismo , Adulto , Idoso , Antígenos CD34/metabolismo , Índice de Massa Corporal , Células da Medula Óssea/metabolismo , Proteína C-Reativa/metabolismo , Antígeno CD11b/metabolismo , Estudos de Coortes , Feminino , Humanos , Hipertensão/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Obesidade/metabolismo , Estudos Prospectivos , Receptores CXCR4/metabolismo , Fumar/metabolismo , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda
13.
Ann Thorac Surg ; 101(2): 667-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26453425

RESUMO

BACKGROUND: Decellularized heart valves are emerging as a potential alternative to current bioprostheses for valve replacement. Whereas techniques of decellularization have been thoroughly examined, terminal sterilization techniques have not received the same scrutiny. METHODS: This study evaluated low-dose gamma irradiation as a sterilization method for decellularized heart valves. Incubation of valves and transmission electron microscopy evaluation after different doses of gamma irradiation were used to determine the optimal dose of gamma irradiation. Quantitative evaluation of mechanical properties was done by tensile mechanical testing of isolated cusps. Sterilized decellularized heart valves were tested in a sheep model (n = 3 [1 at 1,500 Gy and 2 at 3,000 Gy]) of pulmonary valve replacement. RESULTS: Valves sterilized with gamma radiation between 1,000 Gy and 3,000 Gy were found to be optimal with in vitro testing. However, in vivo testing showed deteriorating valve function within 2 months. On explant, the valve with 1,500 Gy gamma irradiation showed signs of endocarditis with neutrophils on hematoxylin and eosin staining, and positive gram stain resembling streptococcus infection. The 3,000 Gy valves had no evidence of infection, but the hematoxylin and eosin staining showed evidence of wound remodeling with macrophages and fibroblasts. Tensile strength testing showed decreased strength (0 Gy: 2.53 ± 0.98 MPa, 1,500 Gy: 2.03 ± 1.23 MPa, and 3,000 Gy: 1.26 ± 0.90 MPa) with increasing levels of irradiation. CONCLUSIONS: Low-dose gamma irradiation does not maintain the mechanical integrity of valves, and the balance between sterilization and damage may not be able to be achieved with gamma irradiation. Other methods of terminal sterilization must be pursued and evaluated.


Assuntos
Bioprótese , Raios gama , Próteses Valvulares Cardíacas , Valvas Cardíacas/lesões , Valvas Cardíacas/efeitos da radiação , Esterilização/métodos , Animais , Valvas Cardíacas/citologia , Técnicas In Vitro , Doses de Radiação , Ovinos , Suínos
14.
Stem Cells Transl Med ; 5(2): 186-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26683870

RESUMO

An important stage in the development of any new therapeutic agent is establishment of the optimal dosage and route of administration. This can be particularly challenging when the treatment is a biologic agent that might exert its therapeutic effects via complex or poorly understood mechanisms. Multiple preclinical and clinical studies have shown paradoxical results, with inconsistent findings regarding the relationship between the cell dose and clinical benefit. Such phenomena can, at least in part, be attributed to variations in cell dosing or concentration and the route of administration (ROA). Although clinical trials of cell-based therapy for cardiovascular disease began more than a decade ago, specification of the optimal dosage and ROA has not been established. The present review summarizes what has been learned regarding the optimal cell dosage and ROA from preclinical and clinical studies of stem cell therapy for heart disease and offers a perspective on future directions. Significance: Preclinical and clinical studies on cell-based therapy for cardiovascular disease have shown inconsistent results, in part because of variations in study-specific dosages and/or routes of administration (ROA). Future preclinical studies and smaller clinical trials implementing cell-dose and ROA comparisons are warranted before proceeding to pivotal trials.


Assuntos
Cardiopatias/terapia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Cateteres Cardíacos , Contagem de Células , Cães , Estudos de Avaliação como Assunto , Cardiopatias/patologia , Humanos , Injeções Intralesionais , Injeções Intravenosas , Células-Tronco/fisiologia , Transplante Autólogo , Transplante Homólogo
15.
Cell Transplant ; 25(9): 1675-1687, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26590374

RESUMO

In the current study, we sought to identify bone marrow-derived mononuclear cell (BM-MNC) subpopulations associated with a combined improvement in left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and maximal oxygen consumption (VO2 max) in patients with chronic ischemic cardiomyopathy 6 months after receiving transendocardial injections of autologous BM-MNCs or placebo. For this prospectively planned analysis, we conducted an embedded cohort study comprising 78 patients from the FOCUS-Cardiovascular Cell Therapy Research Network (CCTRN) trial. Baseline BM-MNC immunophenotypes and progenitor cell activity were determined by flow cytometry and colony-forming assays, respectively. Previously stable patients who demonstrated improvement in LVEF, LVESV, and VO2 max during the 6-month course of the FOCUS-CCTRN study (group 1, n = 17) were compared to those who showed no change or worsened in one to three of these endpoints (group 2, n = 61) and to a subset of patients from group 2 who declined in all three functional endpoints (group 2A, n = 11). Group 1 had higher frequencies of B-cell and CXCR4+ BM-MNC subpopulations at study baseline than group 2 or 2A. Furthermore, patients in group 1 had fewer endothelial colony-forming cells and monocytes/macrophages in their bone marrow than those in group 2A. To our knowledge, this is the first study to show that in patients with ischemic cardiomyopathy, certain bone marrow-derived cell subsets are associated with improvement in LVEF, LVESV, and VO2 max at 6 months. These results suggest that the presence of both progenitor and immune cell populations in the bone marrow may influence the natural history of chronic ischemic cardiomyopathy-even in stable patients. Thus, it may be important to consider the bone marrow composition and associated regenerative capacity of patients when assigning them to treatment groups and evaluating the results of cell therapy trials.


Assuntos
Células-Tronco/citologia , Disfunção Ventricular Esquerda/terapia , Transplante de Medula Óssea , Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Feminino , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/terapia , Estudos Prospectivos , Volume Sistólico/fisiologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/fisiologia
16.
Circ Res ; 116(8): 1392-412, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25858065

RESUMO

The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease.


Assuntos
Doenças Cardiovasculares/patologia , Células Progenitoras Endoteliais/patologia , Músculo Liso Vascular/patologia , Mioblastos de Músculo Liso/patologia , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/cirurgia , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/transplante , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/transplante , Mioblastos de Músculo Liso/metabolismo , Mioblastos de Músculo Liso/transplante , Neovascularização Patológica , Neovascularização Fisiológica , Regeneração , Medicina Regenerativa/métodos , Nicho de Células-Tronco
17.
Circ Res ; 116(1): 99-107, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25406300

RESUMO

RATIONALE: Despite significant interest in bone marrow mononuclear cell (BMC) therapy for ischemic heart disease, current techniques have resulted in only modest benefits. However, selected patients have shown improvements after autologous BMC therapy, but the contributing factors are unclear. OBJECTIVE: The purpose of this study was to identify BMC characteristics associated with a reduction in infarct size after ST-segment-elevation-myocardial infarction. METHODS AND RESULTS: This prospective study comprised patients consecutively enrolled in the CCTRN TIME (Cardiovascular Cell Therapy Research Network Timing in Myocardial Infarction Evaluation) trial who agreed to have their BMCs stored and analyzed at the CCTRN Biorepository. Change in infarct size between baseline (3 days after percutaneous coronary intervention) and 6-month follow-up was measured by cardiac MRI. Infarct-size measurements and BMC phenotype and function data were obtained for 101 patients (mean age, 56.5 years; mean screening ejection fraction, 37%; mean baseline cardiac MRI ejection fraction, 45%). At 6 months, 75 patients (74.3%) showed a reduction in infarct size (mean change, -21.0±17.6%). Multiple regression analysis indicated that infarct size reduction was greater in patients who had a larger percentage of CD31(+) BMCs (P=0.046) and in those with faster BMC growth rates in colony-forming unit Hill and endothelial-colony forming cell functional assays (P=0.033 and P=0.032, respectively). CONCLUSIONS: This study identified BMC characteristics associated with a better clinical outcome in patients with segment-elevation-myocardial infarction and highlighted the importance of endothelial precursor activity in regenerating infarcted myocardium. Furthermore, it suggests that for these patients with segment-elevation-myocardial infarction, myocardial repair was more dependent on baseline BMC characteristics than on whether the patient underwent intracoronary BMC transplantation. CLINICAL TRIAL REGISTRATION INFORMATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT00684021.


Assuntos
Células da Medula Óssea/fisiologia , Transplante de Medula Óssea/métodos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/terapia , Adulto , Idoso , Estudos de Coortes , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
18.
Circ Res ; 115(10): 867-74, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25136078

RESUMO

RATIONALE: Bone marrow (BM) cell therapy for ischemic heart disease (IHD) has shown mixed results. Before the full potency of BM cell therapy can be realized, it is essential to understand the BM niche after acute myocardial infarction (AMI). OBJECTIVE: To study the BM composition in patients with IHD and severe left ventricular (LV) dysfunction. METHODS AND RESULTS: BM from 280 patients with IHD and LV dysfunction were analyzed for cell subsets by flow cytometry and colony assays. BM CD34(+) cell percentage was decreased 7 days after AMI (mean of 1.9% versus 2.3%-2.7% in other cohorts; P<0.05). BM-derived endothelial colonies were significantly decreased (P<0.05). Increased BM CD11b(+) cells associated with worse LV ejection fraction (LVEF) after AMI (P<0.05). Increased BM CD34(+) percentage associated with greater improvement in LVEF (+9.9% versus +2.3%; P=0.03, for patients with AMI and +6.6% versus -0.02%; P=0.021 for patients with chronic IHD). In addition, decreased BM CD34(+) percentage in patients with chronic IHD correlated with decrement in LVEF (-2.9% versus +0.7%; P=0.0355). CONCLUSIONS: In this study, we show a heterogeneous mixture of BM cell subsets, decreased endothelial colony capacity, a CD34+ cell nadir 7 days after AMI, a negative correlation between CD11b percentage and postinfarct LVEF, and positive correlation of CD34 percentage with change in LVEF after cell therapy. These results serve as a possible basis for the small clinical improvement seen in autologous BM cell therapy trials and support selection of potent cell subsets and reversal of comorbid BM impairment. CLINICAL TRIAL REGISTRATIONS URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00684021, NCT00684060, and NCT00824005.


Assuntos
Antígenos CD34/sangue , Células da Medula Óssea/metabolismo , Antígeno CD11b/sangue , Ensaio de Unidades Formadoras de Colônias/métodos , Isquemia Miocárdica/sangue , Disfunção Ventricular Esquerda/sangue , Idoso , Biomarcadores/sangue , Medula Óssea/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/diagnóstico , Volume Sistólico/fisiologia , Resultado do Tratamento , Disfunção Ventricular Esquerda/diagnóstico
19.
Circ Res ; 115(3): 364-75, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24906644

RESUMO

RATIONALE: Macrophages regulate blood vessel structure and function in health and disease. The origins of tissue macrophages are diverse, with evidence for local production and circulatory renewal. OBJECTIVE: We identified a vascular adventitial population containing macrophage progenitor cells and investigated their origins and fate. METHODS AND RESULTS: Single-cell disaggregates from adult C57BL/6 mice were prepared from different tissues and tested for their capacity to form hematopoietic colony-forming units. Aorta showed a unique predilection for generating macrophage colony-forming units. Aortic macrophage colony-forming unit progenitors coexpressed stem cell antigen-1 and CD45 and were adventitially located, where they were the predominant source of proliferating cells in the aortic wall. Aortic Sca-1(+)CD45(+) cells were transcriptionally and phenotypically distinct from neighboring cells lacking stem cell antigen-1 or CD45 and contained a proliferative (Ki67(+)) Lin(-)c-Kit(+)CD135(-)CD115(+)CX3CR1(+)Ly6C(+)CD11b(-) subpopulation, consistent with the immunophenotypic profile of macrophage progenitors. Adoptive transfer studies revealed that Sca-1(+)CD45(+) adventitial macrophage progenitor cells were not replenished via the circulation from bone marrow or spleen, nor was their prevalence diminished by depletion of monocytes or macrophages by liposomal clodronate treatment or genetic deficiency of macrophage colony-stimulating factor. Rather adventitial macrophage progenitor cells were upregulated in hyperlipidemic ApoE(-/-) and LDL-R(-/-) mice, with adventitial transfer experiments demonstrating their durable contribution to macrophage progeny particularly in the adventitia, and to a lesser extent the atheroma, of atherosclerotic carotid arteries. CONCLUSIONS: The discovery and characterization of resident vascular adventitial macrophage progenitor cells provides new insight into adventitial biology and its participation in atherosclerosis and provokes consideration of the broader existence of local macrophage progenitors in other tissues.


Assuntos
Túnica Adventícia/citologia , Aterosclerose/patologia , Linhagem Celular/imunologia , Macrófagos/citologia , Células-Tronco/citologia , Transferência Adotiva , Túnica Adventícia/imunologia , Animais , Antígenos Ly/metabolismo , Aorta/citologia , Aorta/imunologia , Apolipoproteínas E/genética , Aterosclerose/imunologia , Feminino , Hiperlipidemias/imunologia , Hiperlipidemias/patologia , Imunofenotipagem , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/metabolismo , Macrófagos/transplante , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/genética , Baço/citologia , Células-Tronco/imunologia
20.
Circ Res ; 114(10): 1564-8, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24812350

RESUMO

To understand the role of bone marrow mononuclear cells in the treatment of acute myocardial infarction, this overview offers a retrospective examination of strengths and limitations of 3 contemporaneous trials with attention to critical design features and provides an analysis of the combined data set and implications for future directions in cell therapy for acute myocardial infarction.


Assuntos
Transplante de Medula Óssea/métodos , Leucócitos Mononucleares/transplante , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Transplante de Medula Óssea/tendências , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Ensaios Clínicos como Assunto/métodos , Ensaios Clínicos como Assunto/tendências , Bases de Dados Factuais/tendências , Humanos , Leucócitos Mononucleares/patologia , Leucócitos Mononucleares/fisiologia , Estudos Retrospectivos , Volume Sistólico/fisiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA