Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 78(2): 486-502, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037289

RESUMO

BACKGROUND AND AIMS: Assessing mammalian gene function in vivo has traditionally relied on manipulation of the mouse genome in embryonic stem cells or perizygotic embryos. These approaches are time-consuming and require extensive breeding when simultaneous mutations in multiple genes is desired. The aim of this study is to introduce a rapid in vivo multiplexed editing (RIME) method and provide proof of concept of this system. APPROACH AND RESULTS: RIME, a system wherein CRISPR/caspase 9 technology, paired with adeno-associated viruses (AAVs), permits the inactivation of one or more genes in the adult mouse liver. The method is quick, requiring as little as 1 month from conceptualization to knockout, and highly efficient, enabling editing in >95% of target cells. To highlight its use, we used this system to inactivate, alone or in combination, genes with functions spanning metabolism, mitosis, mitochondrial maintenance, and cell proliferation. CONCLUSIONS: RIME enables the rapid, efficient, and inexpensive analysis of multiple genes in the mouse liver in vivo .


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos , Animais , Edição de Genes/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fígado , Mamíferos
2.
Cancer Cell ; 39(8): 1150-1162.e9, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34115987

RESUMO

The underpinnings of cancer metastasis remain poorly understood, in part due to a lack of tools for probing their emergence at high resolution. Here we present macsGESTALT, an inducible CRISPR-Cas9-based lineage recorder with highly efficient single-cell capture of both transcriptional and phylogenetic information. Applying macsGESTALT to a mouse model of metastatic pancreatic cancer, we recover ∼380,000 CRISPR target sites and reconstruct dissemination of ∼28,000 single cells across multiple metastatic sites. We find that cells occupy a continuum of epithelial-to-mesenchymal transition (EMT) states. Metastatic potential peaks in rare, late-hybrid EMT states, which are aggressively selected from a predominately epithelial ancestral pool. The gene signatures of these late-hybrid EMT states are predictive of reduced survival in both human pancreatic and lung cancer patients, highlighting their relevance to clinical disease progression. Finally, we observe evidence for in vivo propagation of S100 family gene expression across clonally distinct metastatic subpopulations.


Assuntos
Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/patologia , Análise de Célula Única/métodos , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Masculino , Camundongos Endogâmicos NOD , Neoplasias Pancreáticas/genética , Proteínas S100/genética , Análise de Sequência de RNA , Células-Tronco/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PeerJ ; 3: e705, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25648772

RESUMO

The level of atmospheric oxygen, a driver of free radical damage and tumorigenesis, decreases sharply with rising elevation. To understand whether ambient oxygen plays a role in human carcinogenesis, we characterized age-adjusted cancer incidence (compiled by the National Cancer Institute from 2005 to 2009) across counties of the elevation-varying Western United States and compared trends displayed by respiratory cancer (lung) and non-respiratory cancers (breast, colorectal, and prostate). To adjust for important demographic and cancer-risk factors, 8-12 covariates were considered for each cancer. We produced regression models that captured known risks. Models demonstrated that elevation is strongly, negatively associated with lung cancer incidence (p < 10(-16)), but not with the incidence of non-respiratory cancers. For every 1,000 m rise in elevation, lung cancer incidence decreased by 7.23 99% CI [5.18-9.29] cases per 100,000 individuals, equivalent to 12.7% of the mean incidence, 56.8. As a predictor of lung cancer incidence, elevation was second only to smoking prevalence in terms of significance and effect size. Furthermore, no evidence of ecological fallacy or of confounding arising from evaluated factors was detected: the lung cancer association was robust to varying regression models, county stratification, and population subgrouping; additionally seven environmental correlates of elevation, such as exposure to sunlight and fine particulate matter, could not capture the association. Overall, our findings suggest the presence of an inhaled carcinogen inherently and inversely tied to elevation, offering epidemiological support for oxygen-driven tumorigenesis. Finally, highlighting the need to consider elevation in studies of lung cancer, we demonstrated that previously reported inverse lung cancer associations with radon and UVB became insignificant after accounting for elevation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA