Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Reprod Dev ; 90(7): 459-468, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35736243

RESUMO

CRISPR-Cas9 gene editing technology provides a method to generate loss-of-function studies to investigate, in vivo, the specific role of specific genes in regulation of reproduction. With proper design and selection of guide RNAs (gRNA) designed to specifically target genes, CRISPR-Cas9 gene editing allows investigation of factors proposed to regulate biological pathways involved with establishment and maintenance of pregnancy. The advantages and disadvantages of using the current gene editing technology in a large farm species is discussed. CRISPR-Cas9 gene editing of porcine conceptuses has generated new perspectives for the regulation of endometrial function during the establishment of pregnancy. The delicate orchestration of conceptus factors facilitates an endometrial proinflammatory response while regulating maternal immune cell migration and expansion at the implantation site is essential for establishment and maintenance of pregnancy. Recent developments and use of endometrial epithelial "organoids" to study endometrial function in vitro provides a future method to screen and target specific endometrial genes as an alternative to generating a gene edited animal model. With continuing improvements in gene editing technology, future researchers will be able to design studies to enhance our knowledge of mechanisms essential for early development and survival of the conceptus.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Gravidez , Feminino , Animais , Suínos/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Reprodução/genética , Endométrio/metabolismo
2.
Commun Biol ; 5(1): 191, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233029

RESUMO

Uterine lumen fluid (ULF) is central to successful pregnancy establishment and maintenance, and impacts offspring wellbeing into adulthood. The current dogma is that ULF composition is primarily governed by endometrial glandular epithelial cell secretions and influenced by progesterone. To investigate the hypothesis that ULF is metabolically semi-autonomous, ULF was obtained from cyclic heifers, and aliquots incubated for various durations prior to analysis by untargeted semi-quantitative metabolomic profiling. Metabolite flux was observed in these ULF isolates, supporting the idea that the biochemical makeup of ULF is semi-autonomously dynamic due to enzyme activities. Subsequent integrative analyses of these, and existing, data predict the specific reactions underpinning this phenomenon. These findings enhance our understanding of the mechanisms leading to pregnancy establishment, with implications for improving fertility and pregnancy outcomes in domestic animals as well as women.


Assuntos
Líquidos Corporais , Doenças Uterinas , Adulto , Animais , Bovinos , Feminino , Fertilidade , Humanos , Gravidez , Progesterona/metabolismo , Doenças Uterinas/metabolismo , Útero/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876774

RESUMO

Suboptimal uterine fluid (UF) composition can lead to pregnancy loss and likely contributes to offspring susceptibility to chronic adult-onset disorders. However, our understanding of the biochemical composition and mechanisms underpinning UF formation and regulation remain elusive, particularly in humans. To address this challenge, we developed a high-throughput method for intraorganoid fluid (IOF) isolation from human endometrial epithelial organoids. The IOF is biochemically distinct to the extraorganoid fluid (EOF) and cell culture medium as evidenced by the exclusive presence of 17 metabolites in IOF. Similarly, 69 metabolites were unique to EOF, showing asymmetrical apical and basolateral secretion by the in vitro endometrial epithelium, in a manner resembling that observed in vivo. Contrasting the quantitative metabolomic profiles of IOF and EOF revealed donor-specific biochemical signatures of organoids. Subsequent RNA sequencing of these organoids from which IOF and EOF were derived established the capacity to readily perform organoid multiomics in tandem, and suggests that transcriptomic regulation underpins the observed secretory asymmetry. In summary, these data provided by modeling uterine luminal and basolateral fluid formation in vitro offer scope to better understand UF composition and regulation with potential impacts on female fertility and offspring well-being.


Assuntos
Endométrio/metabolismo , Metaboloma , Organoides/metabolismo , Adulto , Células Cultivadas , Endométrio/citologia , Células Epiteliais/metabolismo , Exocitose , Feminino , Humanos , Metabolômica/métodos , Cultura Primária de Células/métodos , Via Secretória , Transcriptoma
4.
Biol Reprod ; 104(5): 1022-1033, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33590828

RESUMO

Reproductive efficiency in livestock is a major driver of sustainable food production. The poorly understood process of ruminant conceptus elongation (a) prerequisites maternal pregnancy recognition, (b) is essential to successful pregnancy establishment, and (c) coincides with a period of significant conceptus mortality. Conceptuses at five key developmental stages between Days 8-16 were recovered and cultured in vitro for 6 h prior to conditioned media analysis by untargeted ultrahigh-performance liquid chromatography tandem mass spectroscopy. This global temporal biochemical interrogation of the ex situ bovine conceptus unearths two antithetical stage-specific metabolic phenotypes during tubular (metabolically retentive) vs. filamentous (secretory) development. Moreover, the retentive conceptus phenotype on Day 14 coincides with an established period of elevated metabolic density in the uterine fluid of heifers with high systemic progesterone-a model of accelerated conceptus elongation. These data, combined, suggest a metabolic mechanism underpinning conceptus elongation, thereby enhancing our understanding of the biochemical reciprocity of maternal-conceptus communication, prior to maternal pregnancy recognition.


Assuntos
Criação de Animais Domésticos , Bovinos/fisiologia , Embrião de Mamíferos/metabolismo , Metaboloma , Fenótipo , Prenhez , Animais , Feminino , Metabolômica , Gravidez , Progesterona/metabolismo
5.
Biol Reprod ; 101(2): 328-337, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31181571

RESUMO

Conceptus elongation is a fundamental developmental event coinciding with a period of significant pregnancy loss in cattle. The process has yet to be recapitulated in vitro, whereas in vivo it is directly driven by uterine secretions and indirectly influenced by systemic progesterone. To better understand the environment facilitating this critical reproductive phenomenon, we interrogated the biochemical composition of uterine luminal fluid from heifers with high vs physiological circulating progesterone on days 12-14 of the estrous cycle-the window of conceptus elongation-initiation-by high-throughput untargeted ultrahigh-performance liquid chromatography tandem mass spectroscopy. A total of 233 biochemicals were identified, clustering within 8 superpathways [amino acids (33.9%), lipids (32.2%), carbohydrates (8.6%), nucleotides (8.2%), xenobiotics (6.4%), cofactors and vitamins (5.2%), energy substrates (4.7%), and peptides (0.9%)] and spanning 66 metabolic subpathways. Lipids dominated total progesterone (39.1%) and day (57.1%) effects; however, amino acids (48.5%) and nucleotides (14.8%) accounted for most day by progesterone interactions. Corresponding pathways over-represented in response to day and progesterone include (i) methionine, cysteine, s-adenosylmethionine, and taurine (9.3%); (ii) phospholipid (7.4%); and (iii) (hypo)xanthine and inosine purine metabolism (5.6%). Moreover, under physiological conditions, the uterine lumen undergoes a metabolic shift after day 12, and progesterone supplementation increases total uterine luminal biochemical abundance at a linear rate of 0.41-fold day-1-resulting in a difference (P ≤ 0.0001) by day 14. This global metabolic analysis of uterine fluid during the initiation of conceptus elongation offers new insights into the biochemistry of maternal-embryo communication, with implications for improving ruminant fertility.


Assuntos
Bovinos/embriologia , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Progesterona/metabolismo , Animais , Metabolômica
6.
Sci Rep ; 9(1): 7716, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118434

RESUMO

Conceptus elongation coincides with one of the periods of greatest pregnancy loss in cattle and is characterized by rapid trophectoderm expansion, commencing ~ Day 13 of pregnancy, i.e. before maternal pregnancy recognition. The process has yet to be recapitulated in vitro and does not occur in the absence of uterine gland secretions in vivo. Moreover, conceptus elongation rates are positively correlated to systemic progesterone in maternal circulation. It is, therefore, a maternally-driven and progesterone-correlated developmental phenomenon. This study aimed to comprehensively characterize the biochemical composition of the uterine luminal fluid on Days 12-14 - the elongation-initiation window - in heifers with normal vs. high progesterone, to identify molecules potentially involved in conceptus elongation initiation. Specifically, nucleotide, vitamin, cofactor, xenobiotic, peptide, and energy metabolite profiles of uterine luminal fluid were examined. A total of 59 metabolites were identified, of which 6 and 3 displayed a respective progesterone and day effect, whereas 16 exhibited a day by progesterone interaction, of which 8 were nucleotide metabolites. Corresponding pathway enrichment analysis revealed that pyridoxal, ascorbate, tricarboxylic acid, purine, and pyrimidine metabolism are of likely importance to to conceptus elongation initiation. Moreover, progesterone reduced total metabolite abundance on Day 12 and may alter the uterine microbiome.


Assuntos
Bovinos/fisiologia , Prenhez/fisiologia , Progesterona/fisiologia , Administração Intravaginal , Animais , Blastocisto , Líquidos Corporais/química , Ciclo do Ácido Cítrico , Coenzimas/análise , Metabolismo Energético/efeitos dos fármacos , Feminino , Troca Materno-Fetal , Microbiota/efeitos dos fármacos , Nucleotídeos/análise , Peptídeos/análise , Gravidez , Prenhez/sangue , Progesterona/administração & dosagem , Progesterona/sangue , Útero/efeitos dos fármacos , Útero/metabolismo , Útero/microbiologia , Vitaminas/análise , Xenobióticos/análise
7.
Reproduction ; 157(4): 399-411, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30763281

RESUMO

Successful bovine pregnancy establishment hinges on conceptus elongation, a key reproductive phenomenon coinciding with the period during which most pregnancies fail. Elongation is yet to be recapitulated in vitro, whereas in vivo it is directly driven by uterine secretions and indirectly influenced by prior circulating progesterone levels. To better understand the microenvironment evolved to facilitate this fundamental developmental event, uterine fluid was recovered on Days 12-14 of the oestrous cycle - the window of conceptus elongation initiation - from cycling heifers supplemented, or not, with progesterone. Subsequent lipidomic profiling of uterine luminal fluid by advanced high-throughput metabolomics revealed the consistent presence of 75 metabolites, of which 47% were intricately linked to membrane biogenesis, and with seven displaying a day by progesterone interaction (P ≤ 0.05). Four metabolic pathways were correspondingly enriched according to day and P4 - i.e. comprised metabolites whose concentrations differed between groups (normal vs high P4) at different times (Days 12 vs 13 vs 14). These were inositol, phospholipid, glycerolipid and primary bile acid metabolism. Moreover, P4 elevated total uterine luminal fluid lipid content on Day 14 (P < 0.0001) relative to all other comparisons. The data combined suggest that maternal lipid supply during the elongation-initiation window is primarily geared towards conceptus membrane biogenesis. In summary, progesterone supplementation alters the lipidomic profile of bovine uterine fluid during the period of conceptus elongation initiation.


Assuntos
Embrião de Mamíferos/metabolismo , Ciclo Estral/metabolismo , Lipídeos/análise , Metaboloma , Progesterona/farmacologia , Útero/metabolismo , Animais , Bovinos , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Feminino , Gravidez , Útero/efeitos dos fármacos
8.
Biol Reprod ; 100(3): 672-685, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388203

RESUMO

Pregnancy establishment in cattle is contingent on conceptus elongation-a fundamental developmental event coinciding with the time during which most pregnancies fail. Elongation in vivo is directly driven by uterine secretions, indirectly influenced by systemic progesterone concentrations, and has yet to be recapitulated in vitro. To better understand the microenvironment evolved to facilitate this phenomenon, the amino acid and carbohydrate composition of uterine fluid was interrogated using high-throughput metabolomics on days 12, 13, and 14 of the estrous cycle from heifers with normal and high circulating progesterone. A total of 99 biochemicals (79 amino acids and 20 carbohydrates) were consistently identified, of which 31 showed a day by progesterone interaction. Fructose and mannitol/sorbitol did not exhibit a day by progesterone interaction, but displayed the greatest individual fluctuations (P ≤ 0.05) with respective fold increases of 18.39 and 28.53 in high vs normal progesterone heifers on day 12, and increases by 10.70-fold and 14.85-fold in the uterine fluid of normal progesterone animals on day 14 vs day 12. Moreover, enrichment analyses revealed that the phenylalanine, glutathione, polyamine, and arginine metabolic pathways were among the most affected by day and progesterone. In conclusion, progesterone had a largely stabilizing effect on amino acid flux, and identified biochemicals of likely importance to conceptus elongation initiation include arginine, fructose, glutamate, and mannitol/sorbitol.


Assuntos
Aminoácidos/química , Líquidos Corporais/química , Carboidratos/química , Bovinos/embriologia , Progesterona/farmacologia , Útero/efeitos dos fármacos , Aminoácidos/metabolismo , Animais , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário , Feminino , Útero/fisiologia
9.
Biol Reprod ; 97(3): 413-425, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024972

RESUMO

The aim of this study was to test the hypothesis that the metabolic stresses associated with lactation alter the ability of the endometrium to respond appropriately to the conceptus by examining endometrial gene expression on day 19 of pregnancy. Immediately after calving, primiparous Holstein cows with similar production and fertility estimated breeding values were randomly divided into two groups and either dried off (i.e. never milked) immediately or milked twice daily. Approximately 65-75 days postpartum, grade 1 blastocysts recovered from superovulated Holstein heifer donors (n = 5) were transferred (1 per recipient) into lactating (n = 11) and nonlactating (n = 11) recipients. Control nulliparous Holstein heifers (n = 6) were artificially inseminated. RNA-sequencing was performed on intercaruncular endometrial samples recovered at slaughter from confirmed pregnant animals on day 19 (n = 5 lactating and nonlactating cows; n = 4 heifers). Differentially expressed genes (DEGs) were identified between both postpartum groups compared to heifers and between lactating and nonlactating cows. Functional annotation of DEGs between cows and heifers revealed over-representation of categories, including endosome, cytoplasmic vesicle, endocytosis, regulation of exocytosis, and cytokine receptor activity. Functional categories including transcription factor binding sites, cell motility, and cell migration were enriched for DEGs between endometria from lactating and nonlactating cows. In conclusion, while the evidence for a major effect of lactation on the endometrial transcriptome is relatively weak, these data suggest that the metabolic status of the animal (heifer vs cow) modulates the response of the endometrium to the developing conceptus.


Assuntos
Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Endométrio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Metabolismo/genética , Metabolismo/fisiologia , Transcriptoma/genética , Transcriptoma/fisiologia , Animais , Blastocisto , Bovinos , Endométrio/citologia , Endométrio/ultraestrutura , Feminino , Glucose/metabolismo , Lactação/fisiologia , Ácido Láctico/metabolismo , Paridade/genética , Paridade/fisiologia , Gravidez , Progesterona/sangue , Ácido Pirúvico/metabolismo , RNA/genética , Superovulação , Útero/metabolismo
10.
Reprod Toxicol ; 71: 63-70, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28461242

RESUMO

The dietary derived isoflavone and oestrogen analogue, genistein, is known to perturb fundamental reproductive events such as implantation and embryo cleavage. However the question of whether genistein is able to traverse the oviduct epithelial monolayer and impact oviduct fluid secretion remains unclear. This study tests these research questions using a bioartificial oviduct to show that genistein permeates the oviduct lumen in vitro with a biphasic (burst and plateau) kinetic profile, faster than spontaneous diffusion, and alters the amino acid composition of in vitro derived oviduct fluid (ivDOF) but not as an oestrogen analogue. In addition to offering insights into the potential mechanisms of these findings, this manuscript demonstrates the potential to use the bioartificial oviduct model to characterise the transport or barrier properties of the oviduct towards a range of circulating xenobiotics.


Assuntos
Genisteína/farmacologia , Oviductos/efeitos dos fármacos , Aminoácidos/metabolismo , Animais , Transporte Biológico , Bovinos , Linhagem Celular , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Feminino , Humanos , Oviductos/metabolismo
11.
Biol Reprod ; 95(4): 92, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27488033

RESUMO

In cattle, maternal recognition of pregnancy occurs on Day 16 via secretion of interferon tau (IFNT) by the conceptus. The endometrium can distinguish between embryos with different developmental competencies. In eutherian mammals, X-chromosome inactivation (XCI) is required to ensure an equal transcriptional level of most X-linked genes for both male and female embryos in adult tissues, but this process is markedly different in cattle than mice. We examined how sexual dimorphism affected conceptus transcript abundance and amino acid composition as well as the endometrial transcriptome during the peri-implantation period of pregnancy. Of the 5132 genes that were differentially expressed on Day 19 in male compared to female conceptuses, 2.7% were located on the X chromosome. Concentrations of specific amino acids were higher in the uterine luminal fluid of male compared to female conceptuses, while female conceptuses had higher transcript abundance of specific amino acid transporters (SLC6A19 and SLC1A35). Of note, the endometrial transcriptome was not different in cattle gestating a male or a female conceptus. These data support the hypothesis that, far from being a blastocyst-specific phenomenon, XCI is incomplete before and during implantation in cattle. Despite differences in transcript abundance and amino acid utilization in male versus female conceptuses, the sex of the conceptus itself does not elicit a different transcriptomic response in the endometrium.


Assuntos
Bovinos/genética , Implantação do Embrião/genética , Prenhez/genética , Caracteres Sexuais , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Blastocisto/metabolismo , Bovinos/embriologia , Bovinos/fisiologia , Implantação do Embrião/fisiologia , Endométrio/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Masculino , Gravidez , Prenhez/fisiologia , Transcriptoma , Cromossomo X/genética , Inativação do Cromossomo X/genética
12.
PLoS One ; 9(6): e100010, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24960174

RESUMO

In cattle, conceptus-maternal interactions are critical for the establishment and maintenance of pregnancy. A major component of this early interaction involves the transport of nutrients and secretion of key molecules by uterine epithelial cells to help support conceptus development during the peri-implantation period of pregnancy. Objectives were to: 1) analyze temporal changes in the amino acid (AA) content of uterine luminal fluid (ULF) during the bovine estrous cycle; 2) understand conceptus-induced alterations in AA content; 3) determine expression of AA transporters in the endometrium and conceptus; and 4) determine how these transporters are modulated by (Progesterone) P4. Concentrations of aspartic acid, arginine, glutamine, histidine, lysine, isoleucine, leucine, phenylalanine and tyrosine decreased on Day 16 of the estrous cycle but increased on Day 19 in pregnant heifers (P<0.05). Glutamic acid only increased in pregnant heifers on Day 19 (P<0.001). Asparagine concentrations were greater in ULF of cyclic compared to pregnant heifers on Day 7 (P<0.05) while valine concentrations were higher in pregnant heifers on Day 16 (P<0.05). Temporal changes in expression of the cationic AA transporters SLC7A1 SLC7A4 and SLC7A6 occurred in the endometrium during the estrous cycle/early pregnancy coordinate with changes in conceptus expression of SLC7A4, SLC7A2 and SLC7A1 (P<0.05). Only one acidic AA transporter (SLC1A5) increased in the endometrium while conceptus expression of SLC1A4 increased (P<0.05). The neutral AA transporters SLC38A2 and SLC7A5 increased in the endometrium in a temporal manner while conceptus expression of SLC38A7, SLC43A2, SLC38A11 and SLC7A8 also increased (P<0.05). P4 modified the expression of SLC1A1, -1A4, -1A5, -38A2, -38A4, -38A7, -43A2, -6A14, -7A1, -7A5 and -7A7 in the endometrium. Results demonstrate that temporal changes in AA in the ULF reflect changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle, some of which are modified by P4.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Endométrio/metabolismo , Fertilização/genética , Regulação da Expressão Gênica , Prenhez , Útero/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Bovinos , Implantação do Embrião/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gravidez , Progesterona/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA