Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncol Res ; 32(4): 607-614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560568

RESUMO

C-mannosylation is a post-translational modification that occurs intracellularly in the endoplasmic reticulum. In humans, biosynthesis of C-mannosylation in proteins containing thrombospondin type 1 repeat is catalyzed by the DPY19 family; nonetheless, biological functions of protein C-mannosylation are not yet fully understood, especially in tumor progression. Vasculogenic mimicry (VM) is the formation of fluid-conducting channels by highly invasive and genetically deregulated tumor cells, enabling the tumors to form matrix-embedded vasculogenic structures, containing plasma and blood cells to meet the metabolic demands of rapidly growing tumors. In this study, we focused on DPY19L3, a C-mannosyltransferase, and aimed to unravel its role in VM. Knockout of DPY19L3 inhibited the formation of VM in HT1080 human fibrosarcoma cells. Re-expression of wild-type DPY19L3 recovered VM formation; however, DPY19L3 isoform2, an enzymatic activity-defect mutant, did not restore it, suggesting that the C-mannosyltransferase activity of DPY19L3 is crucial to its function. Furthermore, the knockdown of DPY19L3 in MDA-MB-231 breast cancer cells hindered its network formation ability. Altogether, our findings suggest that DPY19L3 is required for VM formation and stipulate the relevance of C-mannosylation in oncogenesis.


Assuntos
Neoplasias da Mama , Manosiltransferases , Feminino , Humanos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Manosiltransferases/genética , Manosiltransferases/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
2.
Org Biomol Chem ; 22(16): 3230-3236, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38564238

RESUMO

Natural linear polyamines play diverse roles in physiological processes by interacting with receptors at the cellular level. Herein, we describe the stereodivergent synthesis of oligopyrrolidines, which are conformationally constrained polyamines. We synthesized dimeric and trimeric 2-oxo-oligopyrrolidines using an iterative coupling strategy. The key to our success is an iridium-catalyzed trans/cis-selective nucleophilic addition and subsequent threo/erythro-stereoselective reduction. The synthesized pyrrolidines show varying cytotoxicities against a human cancer cell line depending on the number of rings and their stereochemistry.

3.
Bioorg Med Chem Lett ; 104: 129713, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522588

RESUMO

Basidalin, isolated from the basidiomycete Leucoagaricus naucina, has previously demonstrated antibacterial and antitumor properties against murine cancer cells in vivo, but its effects on human cancer cells remain unknown. In this study, we found that basidalin possesses antiproliferative activity against human cancer cell lines. To elucidate the antiproliferative mechanism of basidalin, we focused on autophagy. Treatment with basidalin led to an increase in LC3-II expression level, and accelerated autophagic flux through an mTOR-independent pathway. Moreover, according to the structure-activity relationship analysis-including newly synthesized basidalin analogs-the formyl group, not the amino group, contributes to the antiproliferative activities of basidalin against human cancer cells. Additionally, the antiproliferative activity of basidalin analogs was strongly correlated with autophagy-inducing activity, indicating that basidalin exhibits antiproliferative activity through autophagy induction. These data suggest that basidalin, characterized by its ability to upregulate autophagic flux, emerges as a novel anticancer drug.


Assuntos
Antineoplásicos , Autofagia , Furanos , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Apoptose , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Furanos/farmacologia
5.
FEBS J ; 290(22): 5373-5394, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552474

RESUMO

Premelanosome protein (PMEL), a melanocyte-specific glycoprotein, has an essential role in melanosome maturation, assembling amyloid fibrils for melanin deposition. PMEL undergoes several post-translational modifications, including N- and O-glycosylations, which are associated with proper melanosome development. C-mannosylation is a rare type of protein glycosylation at a tryptophan residue that might regulate the secretion and localization of proteins. PMEL has one putative C-mannosylation site in its core amyloid fragment (CAF); however, there is no report focusing on C-mannosylation of PMEL. To investigate this, we expressed recombinant PMEL in SK-MEL-28 human melanoma cells and purified the protein. Mass spectrometry analyses demonstrated that human PMEL is C-mannosylated at multiple tryptophan residues in its CAF and N-terminal fragment (NTF). In addition to the W153 or W156 residue (CAF), which lies in the consensus sequence for C-mannosylation, the W104 residue (NTF) was C-mannosylated without the consensus sequence. To determine the effects of the modifications, we deleted the PMEL gene by using CRISPR/Cas9 technology and re-expressed wild-type or C-mannosylation-defective mutants of PMEL, in which the C-mannosylated tryptophan was replaced with a phenylalanine residue (WF mutation), in SK-MEL-28 cells. Importantly, fibril-containing melanosomes were significantly decreased in W104F mutant PMEL-re-expressing cells compared with wild-type PMEL, observed using transmission electron microscopy. Furthermore, western blot and immunofluorescence analysis suggested that the W104F mutation may cause mild endoplasmic reticulumretention, possibly associated with early misfolding, and lysosomal misaggregation, thus reducing functional fibril formation. Our results demonstrate that C-mannosylation of PMEL is required for proper melanosome development by regulating PMEL-derived fibril formation.


Assuntos
Amiloide , Triptofano , Humanos , Glicosilação , Triptofano/genética , Triptofano/metabolismo , Amiloide/química , Melanossomas/genética , Melanossomas/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas Amiloidogênicas/metabolismo , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/química , Antígeno gp100 de Melanoma/metabolismo
6.
FEBS Lett ; 597(8): 1114-1124, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36737242

RESUMO

Vasculogenic mimicry (VM) is the formation of microvascular channels by cancer cells. VM requires cellular processes that are regulated by changes in cellular migration and morphology. Cofilin (CFL), a key regulator of actin depolymerization, has been reported to affect malignant phenotypes of cancer. We show that treatment with inhibitors of actin dynamics suppresses VM in MDA-MB-231 human breast cancer cells. We established CFL-knockout (KO) MDA-MB-231 cells and found that VM was attenuated in CFL-KO cells. Although the re-expression of wild-type CFL restored VM in CFL-KO cells, inactive phosphomimetic CFL failed to do so. Collectively, our results demonstrate that CFL is a critical regulator of VM and implicate CFL as a novel therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Citoesqueleto de Actina , Fatores de Despolimerização de Actina , Actinas , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Neovascularização Patológica/genética
7.
Org Lett ; 24(25): 4547-4551, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35713373

RESUMO

Caldorazole (1) was isolated from the marine cyanobacterium Caldora sp. collected on Ishigaki Island, Okinawa, Japan. Its structure was determined to be a new polyketide that contained two thiazole rings and an O-methylenolpyruvamide moiety. Caldorazole (1) showed strong cytotoxicity toward tumor cells that had been seeded at a high density. Cell death induced by 1 in HeLa and A431 cells was also observed only in the presence of the glycolysis blocker 2-deoxy-d-glucose (2DG). Co-treatment with 1 and 2DG remarkably decreased ATP levels in these cells. Furthermore, 1 selectively inhibited complex I in the mitochondrial respiratory chain. Thus, 1 was demonstrated to exert cytotoxicity toward human tumor cells by blocking mitochondrial respiration.


Assuntos
Glucose , Policetídeos , Desoxiglucose/farmacologia , Glicólise , Humanos , Policetídeos/farmacologia , Tiazóis/farmacologia
8.
Oncol Lett ; 23(5): 169, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35496574

RESUMO

Melanoma is a type of skin cancer that derives from melanocytes; this tumor is highly metastatic and causes poor clinical outcomes in patients. Vasculogenic mimicry (VM), a vascular-like network that is formed by tumor cells instead of endothelial cells, promotes the growth and metastasis of tumors by providing tumors with oxygen- and nutrient-containing blood. VM correlates with a poor prognosis in patients with melanoma, but the melanoma-specific mechanisms of VM are unknown. The present study revealed that treatment with the melanogenesis stimulators 3-isobutyl 1-methylxanthine (IBMX) and α-melanocyte-stimulating hormone (α-MSH) significantly inhibited VM in MNT-1 human pigmented melanoma cells. Tyrosinase (TYR), an essential enzyme in melanin production, was upregulated on treatment with α-MSH and IBMX, prompting an examination of the association between TYR and VM. A TYR inhibitor, arbutin, promoted VM in melanoma cells. Furthermore, CRISPR/Cas9-mediated knockout (KO) of TYR increased VM by melanoma cells. Notably, even in non-pigmented melanoma cells, TYR attenuated VM. Although re-expression of wild-type TYR suppressed VM in TYR-KO cells, T373K TYR, a frequently detected mutation in individuals with albinism, failed to inhibit VM. Overall, these results demonstrated that TYR negatively regulates VM, providing novel insights into the antioncogenic function of TYR in melanomas.

9.
Biochim Biophys Acta Gen Subj ; 1866(3): 130084, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34999116
10.
Bioorg Med Chem Lett ; 60: 128589, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35093502

RESUMO

Humulanolides are natural products isolated from Asteriscus, and the isolation and total synthesis of many types of humulanolides have been reported. In this study, we evaluated anti-proliferative activity of twelve humulanolides against various human cancer cell lines and found that humulanolide analog E, which was newly designed and synthesized, exhibited the highest anti-proliferative activity. Structure-activity relationship analysis revealed that α,ß-unsaturated carbonyl moieties in humulanolides play an important role for anti-proliferative activity. To identify molecular targets of humulanolide analog E, we investigated various cell-based and in vitro assays. Treatment with humulanolide analog E against human fibrosarcoma HT1080 cells increased the expression level of HSP70 protein and decreased the levels of AKT and CDK4, which are HSP90 client proteins. Moreover, humulanolide analog E inhibited refolding of denatured luciferase protein via suppression of HSP90 activity in vitro. These results suggest that humulanolide analog E possesses the anti-proliferative activity against human cancer cells by inhibiting HSP90 functions.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Asteraceae/química , Produtos Biológicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
11.
Oncol Rep ; 47(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34913067

RESUMO

Vasculogenic mimicry (VM) is the formation of a blood supply system that confers aggressive and metastatic properties to tumors and correlates with a poor prognosis in cancer patients. Thus, the inhibition of VM is considered an effective approach for cancer treatment, although such a mechanism remains poorly described. In the present study, we examined methionine aminopeptidase­2 (MetAP2), a key factor of angiogenesis, and demonstrated that it is pivotal for VM, using pharmacological and genetic approaches. Fumagillin and TNP­470, angiogenesis inhibitors that target MetAP2, significantly suppressed VM in various human cancer cell lines. We established MetAP2­knockout (KO) human fibrosarcoma HT1080 cells using the CRISPR/Cas9 system and found that VM was attenuated in these cells. Furthermore, re­expression of wild­type MetAP2 restored VM in the MetAP2­KO HT1080 cells, but the substitution of D251, a conserved amino acid in MetAP2, failed to rescue the VM. Collectively, our results demonstrate that MetAP2 is critical for VM in human cancer cells and suggest fumagillin and TNP­470 as potent VM­suppressing agents.


Assuntos
Aminopeptidases/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Cicloexanos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Metaloendopeptidases/efeitos dos fármacos , Metionil Aminopeptidases/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , O-(Cloroacetilcarbamoil)fumagilol/farmacologia , Aminopeptidases/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Fibrossarcoma/tratamento farmacológico , Técnicas de Silenciamento de Genes , Humanos , Metaloendopeptidases/genética , Metionil Aminopeptidases/genética , Neovascularização Patológica/genética , Sesquiterpenos/farmacologia
12.
Cancer Sci ; 113(3): 950-959, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34971015

RESUMO

ErbB4 is a member of the ErbB receptor tyrosine kinase family. It has both pro- and anti-oncogenic activities in tumors. Vasculogenic mimicry (VM), a phenomenon in which cancer cells form capillary-like structures without endothelial cells, has been recognized to be a cause of malignant phenotypes in some solid tumors. Here, we used an in vitro VM formation assay, and demonstrated that ErbB4 negatively regulated VM formation in human breast cancer cells. By using CRISPR/Cas9-mediated gene knockout, we verified that the depletion of endogenous ErbB4 improved the VM formation capability. Although treatment with neuregulin 1 (NRG1), a ligand of ErbB4, induced the phosphorylation of ErbB4 and promoted VM formation in a dose-dependent manner, it did not induce such activities in kinase-dead K751M ErbB4-overexpressing cells. Moreover, we examined the effect of the missense mutation E872K of ErbB4, which has been reported in multiple tumors, on VM formation, and found that the mutation enhanced the basal phosphorylation level and ErbB4-mediated VM formation in the absence of NRG1 stimulation. Whereas NRG1 stimulated VM formation, excessive activation of ErbB4 induced a negative effect. In E872K ErbB4-overexpressing cells, but not in wild-type ErbB4-overexpressing cells, the number of VM tubes was significantly decreased by low-dose treatment with the ErbB inhibitor afatinib. Taken together, our findings demonstrated the significance of ErbB4-mediated VM formation, and suggested the possibility of ErbB4 mutations as effective targets in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neovascularização Patológica/metabolismo , Receptor ErbB-4/metabolismo , Afatinib/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Mutação , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neuregulina-1/genética , Neuregulina-1/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-4/genética
13.
Biochem Biophys Res Commun ; 560: 93-98, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33984770

RESUMO

Glucosyl-galactosyl-hydroxylation (GGH) is one type of post-translational modification, which is mainly observed in collagen-like domain-containing proteins. Using LC-MS/MS analysis, we found a GGH-like modification at Lys65 of fibrinogen-like protein 1 (FGL1), although it does not contain a collagen-like domain. To identify the glycosyltransferases responsible for this modification, we established LH3/GLT25D1-knockout FGL1-overexpressing HT1080 cell lines. The result showed that knockout of LH3 or GLT25D1 significantly inhibited the glycosylation. Furthermore, deficiency of GGH by point mutation of the FGL1 protein or knockout of the GGH-related glycosyltransferase reduced FGL1 protein levels. Taken together, these data indicate that Lys65 of FGL1 is glucosyl-galactosyl-hydroxylated by LH3 and GLT25D1. Our results provide novel insights to regulate various FGL1 functions.


Assuntos
Fibrinogênio/metabolismo , Galactosiltransferases/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Linhagem Celular Tumoral , Fibrinogênio/química , Glicosilação , Humanos , Lisina/metabolismo , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Estabilidade Proteica
14.
Nat Commun ; 12(1): 1261, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627640

RESUMO

ALK gene rearrangement was observed in 3%-5% of non-small cell lung cancer patients, and multiple ALK-tyrosine kinase inhibitors (TKIs) have been sequentially used. Multiple ALK-TKI resistance mutations have been identified from the patients, and several compound mutations, such as I1171N + F1174I or I1171N + L1198H are resistant to all the approved ALK-TKIs. In this study, we found that gilteritinib has an inhibitory effect on ALK-TKI-resistant single mutants and I1171N compound mutants in vitro and in vivo. Surprisingly, EML4-ALK I1171N + F1174I compound mutant-expressing tumors were not completely shrunk but regrew within a short period of time after alectinib or lorlatinib treatment. However, the relapsed tumor was markedly shrunk after switching to the gilteritinib in vivo model. In addition, gilteritinib was effective against NTRK-rearranged cancers including entrectinib-resistant NTRK1 G667C-mutant and ROS1 fusion-positive cancer.


Assuntos
Compostos de Anilina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Lactamas Macrocíclicas/uso terapêutico , Pirazinas/uso terapêutico , Aminopiridinas , Animais , Apoptose/fisiologia , Benzamidas/uso terapêutico , Carbazóis/uso terapêutico , Linhagem Celular , Sobrevivência Celular/fisiologia , Crizotinibe/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Immunoblotting , Indazóis/uso terapêutico , Lactamas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Recidiva Local de Neoplasia , Piperidinas/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pirazóis , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
15.
Bioorg Med Chem ; 34: 116041, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33549907

RESUMO

Madangamines are marine natural products isolated from Xestospongia ingens, and madangamine A-E with a different D-ring structure have been reported. We have reported that madangamine A has strong anti-proliferative activity against various human cancer cell lines. In this study, to clarify the anti-proliferative activity of madangamine A, we searched for molecular target of the madangamine A in human cells. Treatment with madangamine A increased the levels of LC3-II and p62, autophagy-related proteins, concomitant with growth inhibition. Moreover, madangamine A resulted in lysosome enlargement and increase in lysosomal pH, which are same phenomena observed in chloroquine-treated cells. These results suggest that madangamine A is a novel lysosome inhibitor, and the anti-proliferative activity of madangamine A is due to the inhibition of lysosome function.


Assuntos
Autofagia/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Poríferos/química , Animais , Produtos Biológicos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Estrutura Molecular , Regulação para Cima
16.
Biochim Biophys Acta Gen Subj ; 1865(3): 129840, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412225

RESUMO

BACKGROUND: C-mannosylation is a type of protein glycosylation. Human Isthmin-1 (ISM1) is a 52-kDa secreted protein with a thrombospondin type 1 repeat (TSR) domain, containing two consensus C-mannosylation sequences at Trp223 and Trp226. In this study, we sought to examine the role of C-mannosylation in the secretion of ISM1. METHODS: We established and cultured an ISM1-overexpressing HT1080 cell line and purified recombinant ISM1 for analysis from the conditioned medium by LC-MS/MS. Subcellular localization of ISM1 was observed by confocal fluorescence microscopy. RESULTS: We found that ISM1 is C-mannosylated at Trp223 and Trp226 in the TSR domain. To determine the functions of the C-mannosylation of ISM1, we established a C-mannosylation-defective mutant ISM1-overexpressing HT1080 cell line and measured its secretion of ISM1. The secretion of ISM1 decreased significantly in this mutant ISM1-overexpressing line compared with wild-type cells. Furthermore, ISM1 was N-glycosylated only in these C-mannosylation-defective cells. CONCLUSIONS: ISM1 is C-mannosylated in its TSR domain, and the status of the C-mannosylation of ISM1 affects its N-glycosylation. GENERAL SIGNIFICANCE: The C-mannosylation of ISM1 regulates its N-glycosylation status.


Assuntos
Manose/metabolismo , Processamento de Proteína Pós-Traducional , Trombospondinas/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/química , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glicosilação , Humanos , Manose/química , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trombospondinas/genética
17.
Angew Chem Int Ed Engl ; 60(10): 5193-5198, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33252821

RESUMO

All-nitrogenated sugars (ANSs), in which all hydroxy groups in a carbohydrate are replaced with amino groups, are anticipated to be privileged structures with useful biological activities. However, ANS synthesis has been challenging due to the difficulty in the installation of multi-amino groups. We report herein the development of a concise synthetic route to peracetylated ANSs in seven steps from commercially available monosaccharides. The key to success is the use of the sequential Overman rearrangement, which enables formal simultaneous substitution of four or five hydroxy groups in monosaccharides with amino groups. A variety of ANSs are available through the same reaction sequence starting from different initial monosaccharides by chirality transfer of secondary alcohols. Transformations of the resulting peracetylated ANSs such as glycosylation and deacetylation are also demonstrated. Biological studies reveal that ANS-modified cholesterol show cytotoxicity against human cancer cell lines, whereas each ANS and cholesterol have no cytotoxicity.


Assuntos
Amino Açúcares/síntese química , Amino Açúcares/farmacologia , Amino Açúcares/toxicidade , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colesterol/análogos & derivados , Colesterol/farmacologia , Colesterol/toxicidade , Glicosilação , Humanos
18.
Biochim Biophys Acta Gen Subj ; 1865(3): 129833, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358865

RESUMO

BACKGROUND: C-mannosylation is a unique type of glycosylation. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a multidomain extracellular metalloproteinase that contains several potential C-mannosylation sites. Although some ADAMTS family proteins have been reported to be C-mannosylated proteins, whether C-mannosylation affects the activation and protease activity of these proteins is unclear. METHODS: We established wild-type and mutant ADAMTS4-overexpressing HT1080 cell lines. Recombinant ADAMTS4 was purified from the conditioned medium of the wild-type ADAMTS4-overexpressing cells, and the C-mannosylation sites of ADAMTS4 were identified by LC-MS/MS. The processing, secretion, and intracellular localization of ADAMTS4 were examined by immunoblot and immunofluorescence analyses. ADAMTS4 enzymatic activity was evaluated by assessing the cleavage of recombinant aggrecan. RESULTS: We identified that ADAMTS4 is C-mannosylated at Trp404 in the metalloprotease domain and at Trp523, Trp526, and Trp529 in the thrombospondin type 1 repeat (TSR). The replacement of Trp404 with Phe affected ADAMTS4 processing, without affecting secretion and intracellular localization. In contrast, the substitution of Trp523, Trp526, and Trp529 with Phe residues suppressed ADAMTS4 secretion, processing, intracellular trafficking, and enzymatic activity. CONCLUSIONS: Our results demonstrated that the C-mannosylation of ADAMTS4 plays important roles in protein processing, intracellular trafficking, secretion, and enzymatic activity. GENERAL SIGNIFICANCE: Because C-mannosylation appears to regulate many ADAMTS4 functions, C-mannosylation may also affect other members of the ADAMTS superfamily.


Assuntos
Proteína ADAMTS4/metabolismo , Agrecanas/metabolismo , Manose/metabolismo , Processamento de Proteína Pós-Traducional , Proteína ADAMTS4/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica
19.
Biochim Biophys Acta Gen Subj ; 1864(9): 129637, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32442478

RESUMO

BACKGROUND: C-mannosylation is the one of glycosylations. Microfibril-associated glycoprotein 4 (MFAP4), an important protein for tissue homeostasis and cell adhesion, contains a consensus sequence of C-mannosylation in its fibrinogen C-terminal domain. In this study, we sought to demonstrate that fibrinogen C-terminal domain is a new substrate domain for C-mannosylation. METHODS: We established an MFAP4-overexpresssing HT1080 cell line and purified recombinant MFAP4 protein from the conditioned medium for LC-MS/MS analysis. Subcellular localization of MFAP4 was observed under confocal fluorescence microscope. RESULTS: We found that MFAP4 is C-mannosylated at Trp235 in the fibrinogen C-terminal domain by LC-MS/MS. To determine the functions of the C-mannosylation of MFAP4, we established a C-mannosylation-defective mutant MFAP4-overexpresssing HT1080 cell line and measured its secretion of MFAP4. The secretion of MFAP4 decreased significantly in the C-mannosylation-defective mutant MFAP4-overexpresssing cell line versus wild-type cells. Moreover, co-transfection experiments indicated that C-mannosylated MFAP4 accelerated its secretion. CONCLUSIONS: Our results demonstrate that the fibrinogen C-terminal domain is a novel C-mannosylation domain and that the C-mannosylation of MFAP4 is important for its secretion. GENERAL SIGNIFICANCE: These results suggest that C-mannosylation has a role for dominant effect for MFAP4 secretion.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibrinogênio/química , Fibrinogênio/metabolismo , Glicoproteínas/metabolismo , Manose/metabolismo , Linhagem Celular Tumoral , Humanos , Domínios Proteicos , Transporte Proteico
20.
Biochem Biophys Rep ; 21: 100734, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32025578

RESUMO

Vasculogenic mimicry (VM) promotes tumor migration, metastasis, and invasion in various types of cancer, but the relationship between VM and these phenotypes remains undefined. In this study, we examined carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) as a novel target of VM. We found that ectopic expression of CEACAM1 in HT1080 human fibrosarcoma cells suppressed the formation of a VM-like network. Further, cell migration and proliferation were abated by the introduction of CEACAM1 into HT1080 cells. Conversely, knockout (KO) of the CEACAM1 gene in SK-MEL-28 melanoma cells, which normally express high levels of CEACAM1, inhibited formation of a VM-like network, which was covered on reintroduction of CEACAM1. These results suggest that CEACAM1 differentially regulates formation of the VM-like network between cancer cell types and implicate CEACAM1 as a novel therapeutic target in malignant cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA