Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiologyopen ; 10(4): e1203, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459556

RESUMO

Streptococcus mitis is a commensal bacterial species of the oral cavity, with the potential for opportunistic pathogenesis. For successful colonization, S. mitis must be able to adhere to surfaces of the oral cavity and survive and adapt to frequently changing environmental conditions. Cyclic-di-AMP (c-di-AMP) is a nucleotide second messenger, involved in the regulation of stress responses and biofilm formation in several bacterial species. Cyclic-di-AMP is produced by diadenylate cyclases and degraded by phosphodiesterases. We have previously shown that in S. mitis, one diadenylate cyclase (CdaA) and at least two phosphodiesterases (Pde1 and Pde2) regulate the intracellular concentration of c-di-AMP. In this study, we utilized S. mitis deletion mutants of cdaA, pde1, and pde2 to analyze the role of c-di-AMP signaling in various stress responses, biofilm formation, and adhesion to eukaryotic cells. Here, we demonstrate that the Δpde1 mutant displayed a tendency toward increased susceptibility to acetic acid at pH 4.0. Deletion of cdaA increases auto-aggregation of S. mitis but reduces biofilm formation on an abiotic surface. These phenotypes are more pronounced under acidic extracellular conditions. Inactivation of pde1 or pde2 reduced the tolerance to ciprofloxacin, and UV radiation and the Δpde1 mutant was more susceptible to Triton X-100, indicating a role for c-di-AMP signaling in responses to DNA damage and cell membrane perturbation. Finally, the Δpde2 mutant displayed a tendency toward a reduced ability to adhere to oral keratinocytes. Taken together, our results indicate an important role for c-di-AMP signaling in cellular processes important for colonization of the mouth.


Assuntos
Adaptação Fisiológica/fisiologia , Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Streptococcus mitis/metabolismo , Ácido Acético/farmacologia , Linhagem Celular Tumoral , Ciprofloxacina/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Queratinócitos/microbiologia , Boca/microbiologia , Octoxinol/farmacologia , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Streptococcus mitis/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia
2.
Microorganisms ; 8(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825526

RESUMO

Cyclic di-adenosine monophosphate (c-di-AMP) has emerged as an important bacterial signaling molecule that functions both as an intracellular second messenger in bacterial cells and an extracellular ligand involved in bacteria-host cross-talk. In this study, we identify and characterize proteins involved in controlling the c-di-AMP concentration in the oral commensal and opportunistic pathogen Streptococcusmitis (S. mitis). We identified three known types of c-di-AMP turnover proteins in the genome of S. mitis CCUG31611: a CdaA-type diadenylate cyclase as well as GdpP-, and DhhP-type phosphodiesterases. Biochemical analyses of purified proteins demonstrated that CdaA synthesizes c-di-AMP from ATP whereas both phosphodiesterases can utilize c-di-AMP as well as the intermediary metabolite of c-di-AMP hydrolysis 5'-phosphadenylyl-adenosine (pApA) as substrate to generate AMP, albeit at different catalytic efficiency. Using deletion mutants of each of the genes encoding c-di-AMP turnover proteins, we show by high resolution MS/MS that the intracellular concentration of c-di-AMP is increased in deletion mutants of the phosphodiesterases and non-detectable in the cdaA-mutant. We also detected pApA in mutants of the DhhP-type phosphodiesterase. Low and high levels of c-di-AMP were associated with longer and shorter chains of S. mitis, respectively indicating a role in regulation of cell division. The deletion mutant of the DhhP-type phosphodiesterase displayed slow growth and reduced rate of glucose metabolism.

3.
Antibiotics (Basel) ; 9(2)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028684

RESUMO

Recognition of the fact that bacterial biofilm may play a role in the pathogenesis of disease has led to an increased focus on identifying diseases that may be biofilm-related. Biofilm infections are typically chronic in nature, as biofilm-residing bacteria can be resilient to both the immune system, antibiotics, and other treatments. This is a comprehensive review describing biofilm diseases in the auditory, the cardiovascular, the digestive, the integumentary, the reproductive, the respiratory, and the urinary system. In most cases reviewed, the biofilms were identified through various imaging technics, in addition to other study approaches. The current knowledge on how biofilm may contribute to the pathogenesis of disease indicates a number of different mechanisms. This spans from biofilm being a mere reservoir of pathogenic bacteria, to playing a more active role, e.g., by contributing to inflammation. Observations also indicate that biofilm does not exclusively occur extracellularly, but may also be formed inside living cells. Furthermore, the presence of biofilm may contribute to development of cancer. In conclusion, this review shows that biofilm is part of many, probably most chronic infections. This is important knowledge for development of effective treatment strategies for such infections.

4.
Biochem J ; 470(1): 23-37, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26251444

RESUMO

2-Deoxy-D-glucose (2DG) is a structural analogue of glucose with well-established applications as an inhibitor of glycolysis and N-glycosylation. Importantly, 2DG has been shown to improve the efficacy of several cancer chemotherapeutic agents in vivo and thus it is in clinical studies in combination with chemotherapy and radiotherapy. However, although 2DG has been demonstrated to modulate many cellular functions, including autophagy, apoptosis and cell cycle control, little is known about the effects of 2DG on intracellular transport, which is of great importance when predicting the effects of 2DG on therapeutic agents. In addition to proteins, lipids play important roles in cellular signalling and in controlling cellular trafficking. We have, in the present study, investigated the effects of 2DG on cellular lipid composition and by use of protein toxins we have studied 2DG-mediated changes in intracellular trafficking. By quantifying more than 200 individual lipid species from 17 different lipid classes, we have found that 2DG treatment changes the levels and/or species composition of several lipids, such as phosphatidylinositol (PI), diacylglycerol (DAG), cholesteryl ester (CE), ceramide (Cer) and lysophospho-lipids. Moreover, 2DG becomes incorporated into the carbohydrate moiety of glycosphingolipids (GSLs). In addition, we have discovered that 2DG protects cells against Shiga toxins (Stxs) and inhibits release of the cytotoxic StxA1 moiety in the endoplasmic reticulum (ER). The data indicate that the 2DG-induced protection against Stx is independent of inhibition of glycolysis or N-glycosylation, but rather mediated via the depletion of Ca(2+) from cellular reservoirs by 2DG. In conclusion, our results reveal novel actions of 2DG on cellular lipids and Stx toxicity.


Assuntos
Citoproteção/efeitos dos fármacos , Desoxiglucose/farmacologia , Lipídeos de Membrana/metabolismo , Toxinas Shiga/toxicidade , Linhagem Celular , Citoproteção/fisiologia , Humanos
5.
PLoS One ; 10(5): e0129214, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26017782

RESUMO

The heat shock protein 90 (Hsp90) inhibitor geldanamycin (GA) has been shown to alter endosomal sorting, diverting cargo destined for the recycling pathway into the lysosomal pathway. Here we investigated whether GA also affects the sorting of cargo into the retrograde pathway from endosomes to the Golgi apparatus. As a model cargo we used the bacterial toxin Shiga toxin, which exploits the retrograde pathway as an entry route to the cytosol. Indeed, GA treatment of HEp-2 cells strongly increased the Shiga toxin transport to the Golgi apparatus. The enhanced Golgi transport was not due to increased endocytic uptake of the toxin or perturbed recycling, suggesting that GA selectively enhances endosomal sorting into the retrograde pathway. Moreover, GA activated p38 and both inhibitors of p38 or its substrate MK2 partially counteracted the GA-induced increase in Shiga toxin transport. Thus, our data suggest that GA-induced p38 and MK2 activation participate in the increased Shiga toxin transport to the Golgi apparatus.


Assuntos
Benzoquinonas/farmacologia , Transporte Biológico/efeitos dos fármacos , Lactamas Macrocíclicas/farmacologia , Transporte Proteico/efeitos dos fármacos , Toxina Shiga/metabolismo , Toxinas Bacterianas/metabolismo , Linhagem Celular Tumoral , Citosol/efeitos dos fármacos , Citosol/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Cell Mol Life Sci ; 71(21): 4285-300, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24740796

RESUMO

Shiga toxin-producing Escherichia coli bacteria cause hemorrhagic colitis and hemolytic uremic syndrome in humans. Currently, only supportive treatment is available for diagnosed patients. We show here that 24-h pretreatment with an ether lipid precursor, the alkylglycerol sn-1-O-hexadecylglycerol (HG), protects HEp-2 cells against Shiga toxin and Shiga toxin 2. Also the endothelial cell lines HMEC-1 and HBMEC are protected against Shiga toxins after HG pretreatment. In contrast, the corresponding acylglycerol, DL-α-palmitin, has no effect on Shiga toxicity. Although HG treatment provides a strong protection (~30 times higher IC50) against Shiga toxin, only a moderate reduction in toxin binding was observed, suggesting that retrograde transport of the toxin from the plasma membrane to the cytosol is perturbed. Furthermore, endocytosis of Shiga toxin and retrograde sorting from endosomes to the Golgi apparatus remain intact, but transport from the Golgi to the endoplasmic reticulum is inhibited by HG treatment. As previously described, HG reduces the total level of all quantified glycosphingolipids to 50-70% of control, including the Shiga toxin receptor globotriaosylceramide (Gb3), in HEp-2 cells. In accordance with this, we find that interfering with Gb3 biosynthesis by siRNA-mediated knockdown of Gb3 synthase for 24 h causes a similar cytotoxic protection and only a moderate reduction in toxin binding (to 70% of control cells). Alkylglycerols, including HG, have been administered to humans for investigation of therapeutic roles in disorders where ether lipid biosynthesis is deficient, as well as in cancer therapy. Further studies may reveal if HG can also have a therapeutic potential in Shiga toxin-producing E. coli infections.


Assuntos
Glicerol/química , Éteres de Glicerila/química , Toxinas Shiga/química , Transporte Biológico , Biotinilação , Linhagem Celular , Membrana Celular/metabolismo , Citosol/metabolismo , Endocitose , Retículo Endoplasmático/metabolismo , Escherichia coli/metabolismo , Éter/química , Glicoesfingolipídeos/química , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Concentração Inibidora 50 , Lipídeos/química , Ácido Palmítico/química , Toxina Shiga/química , Triexosilceramidas/química
7.
Cell Mol Life Sci ; 71(6): 1097-116, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23921715

RESUMO

Cell density is one of the extrinsic factors to which cells adapt their physiology when grown in culture. However, little is known about the molecular changes which occur during cell growth and how cellular responses are then modulated. In many cases, inhibitors, drugs or growth factors used for in vitro studies change the rate of cell proliferation, resulting in different cell densities in control and treated samples. Therefore, for a comprehensive data analysis, it is essential to understand the implications of cell density on the molecular level. In this study, we have investigated how lipid composition changes during cell growth, and the consequences it has for transport of Shiga toxin. By quantifying 308 individual lipid species from 17 different lipid classes, we have found that the levels and species distribution of several lipids change during cell growth, with the major changes observed for diacylglycerols, phosphatidic acids, cholesterol esters, and lysophosphatidylethanolamines. In addition, there is a reduced binding and retrograde transport of Shiga toxin in high density cells which lead to reduced intoxication by the toxin. In conclusion, our data provide novel information on how lipid composition changes during cell growth in culture, and how these changes can modulate intracellular trafficking.


Assuntos
Contagem de Células , Metabolismo dos Lipídeos , Sintaxina 1/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Colesterol/metabolismo , Diglicerídeos/metabolismo , Globosídeos/metabolismo , Glicoesfingolipídeos/metabolismo , Células HeLa , Células Hep G2 , Humanos , Lisofosfolipídeos/metabolismo , Ácidos Fosfatídicos/metabolismo , Transporte Proteico , Toxina Shiga/metabolismo , Sintaxina 1/genética , Triexosilceramidas/metabolismo
8.
Toxicon ; 60(6): 1085-107, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22960449

RESUMO

Shiga toxins are virulence factors produced by the bacteria Shigella dysenteriae and certain strains of Escherichia coli. There is currently no available treatment for disease caused by these toxin-producing bacteria, and understanding the biology of the Shiga toxins might be instrumental in addressing this issue. In target cells, the toxins efficiently inhibit protein synthesis by inactivating ribosomes, and they may induce signaling leading to apoptosis. To reach their cytoplasmic target, Shiga toxins are endocytosed and transported by a retrograde pathway to the endoplasmic reticulum, before the enzymatically active moiety is translocated to the cytosol. The toxins thereby serve as powerful tools to investigate mechanisms of intracellular transport. Although Shiga toxins are a serious threat to human health, the toxins may be exploited for medical purposes such as cancer therapy or imaging.


Assuntos
Toxinas Shiga/química , Fatores de Virulência , Apoptose , Transporte Biológico , Endocitose , Retículo Endoplasmático/metabolismo , Escherichia coli/química , Toxinas Shiga/genética , Toxinas Shiga/isolamento & purificação , Shigella dysenteriae/química , Transdução de Sinais
9.
Environ Microbiol ; 7(7): 1029-38, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15946300

RESUMO

Highly successful bacterial clones have the ability to effectively colonize environmental niches and patients. However, the factors which determine the complex interplay between the colonization of environmental niches and patients are mainly unknown. In this study we show that Pseudomonas aeruginosa clone C strains are distributed worldwide and highly prone to infect cystic fibrosis (CF) patients in Canada, England, France and Germany. In Hanover, Germany and Vancouver, Canada, clone C strains are highly prevalent in the CF patient community, although the mechanisms of acquisition may have been different. All clone C strains showed highly related macrorestriction fragment pattern of the whole genome as visualized by pulsed-field gel electrophoresis and harboured the 102 kbp plasmid pKLC102. Comparison of three prevalent P. aeruginosa clones with different distribution between the environment and patients revealed that neither enhanced biofilm formation nor antibiotic resistance was responsible for the spread of clone C. Clone M, which was highly prevalent in the clinical environment such as sanitary facilities, lacked motility, which could explain its relatively low prevalence in CF patients. Elucidation of the mechanisms which lead to the prevalence of clone C strain in patients and the environment requires the investigation of additional phenotypes.


Assuntos
Fibrose Cística/epidemiologia , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/isolamento & purificação , Microbiologia da Água , Biofilmes , Canadá/epidemiologia , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , Europa (Continente)/epidemiologia , Proteínas de Fímbrias/genética , Flagelina/genética , Humanos , Movimento , Prevalência , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA