Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7204, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169060

RESUMO

Crohn's disease (CD) is a complex chronic inflammatory disorder with both gastrointestinal and extra-intestinal manifestations associated immune dysregulation. Analyzing 202,359 cells from 170 specimens across 83 patients, we identify a distinct epithelial cell type in both terminal ileum and ascending colon (hereon as 'LND') with high expression of LCN2, NOS2, and DUOX2 and genes related to antimicrobial response and immunoregulation. LND cells, confirmed by in-situ RNA and protein imaging, are rare in non-IBD controls but expand in active CD, and actively interact with immune cells and specifically express IBD/CD susceptibility genes, suggesting a possible function in CD immunopathogenesis. Furthermore, we discover early and late LND subpopulations with different origins and developmental potential. A higher ratio of late-to-early LND cells correlates with better response to anti-TNF treatment. Our findings thus suggest a potential pathogenic role for LND cells in both Crohn's ileitis and colitis.


Assuntos
Colo , Doença de Crohn , Oxidases Duais , Células Epiteliais , Íleo , Lipocalina-2 , Doença de Crohn/patologia , Doença de Crohn/genética , Doença de Crohn/imunologia , Humanos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Colo/patologia , Íleo/patologia , Lipocalina-2/metabolismo , Lipocalina-2/genética , Oxidases Duais/genética , Oxidases Duais/metabolismo , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Feminino , Adulto , Fator de Necrose Tumoral alfa/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Pessoa de Meia-Idade
2.
Cell Mol Gastroenterol Hepatol ; 18(3): 101366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38815928

RESUMO

BACKGROUND & AIMS: Type 2 innate lymphoid cells (ILC2s) and interleukin-13 (IL-13) promote the onset of spasmolytic polypeptide-expressing metaplasia (SPEM) cells. However, little is known about molecular effects of IL-13 in SPEM cells. We now sought to establish a reliable organoid model, Meta1 gastroids, to model SPEM cells in vitro. We evaluated cellular and molecular effects of ILC2s and IL-13 on maturation and proliferation of SPEM cells. METHODS: We performed single-cell RNA sequencing to characterize Meta1 gastroids, which were derived from stomachs of Mist1-Kras transgenic mice that displayed pyloric metaplasia. Cell sorting was used to isolate activated ILC2s from stomachs of IL-13-tdTomato reporter mice treated with L635. Three-dimensional co-culture was used to determine the effects of ILC2s on Meta1 gastroids. Mouse normal or metaplastic (Meta1) and human metaplastic gastroids were cultured with IL-13 to evaluate cell responses. Air-Liquid Interface culture was performed to test long-term culture effects of IL-13. In silico analysis determined possible STAT6-binding sites in gene promoter regions. STAT6 inhibition was performed to corroborate STAT6 role in SPEM cells maturation. RESULTS: Meta1 gastroids showed the characteristics of SPEM cell lineages in vitro even after several passages. We demonstrated that co-culture with ILC2s or IL-13 treatment can induce phosphorylation of STAT6 in Meta1 and normal gastroids and promote the maturation and proliferation of SPEM cell lineages. IL-13 up-regulated expression of mucin-related proteins in human metaplastic gastroids. Inhibition of STAT6 blocked SPEM-related gene expression in Meta1 gastroids and maturation of SPEM in both normal and Meta1 gastroids. CONCLUSIONS: IL-13 promotes the maturation and proliferation of SPEM cells consistent with gastric mucosal regeneration.


Assuntos
Proliferação de Células , Interleucina-13 , Metaplasia , Camundongos Transgênicos , Fator de Transcrição STAT6 , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Humanos , Fator de Transcrição STAT6/metabolismo , Mucosa Gástrica/imunologia , Mucosa Gástrica/citologia , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Organoides/metabolismo , Linfócitos/metabolismo , Linfócitos/imunologia , Linfócitos/efeitos dos fármacos , Imunidade Inata , Estômago/patologia , Estômago/citologia , Análise de Célula Única , Peptídeos e Proteínas de Sinalização Intercelular
3.
Cell ; 186(25): 5620-5637.e16, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065082

RESUMO

Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Microambiente Tumoral , Humanos , Instabilidade Cromossômica/genética , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Quinases Ativadas por p21/genética , Filogenia , Mutação , Progressão da Doença , Prognóstico
4.
Acta Biomater ; 163: 365-377, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483629

RESUMO

The role of intratumor heterogeneity is becoming increasingly apparent in part due to expansion in single cell technologies. Clinically, tumor heterogeneity poses several obstacles to effective cancer therapy dealing with biomarker variability and treatment responses. Matrix stiffening is known to occur during tumor progression and contribute to pathogenesis in several cancer hallmarks, including tumor angiogenesis and metastasis. However, the effects of matrix stiffening on intratumor heterogeneity have not been thoroughly studied. In this study, we applied single-cell RNA sequencing to investigate the differences in the transcriptional landscapes between stiff and compliant MMTV-PyMT mouse mammary tumors. We found similar compositions of cancer and stromal subpopulations in compliant and stiff tumors but differential intercellular communication and a significantly higher concentration of tumor-promoting, M2-like macrophages in the stiffer tumor microenvironments. Interestingly, we found that cancer cells seeded on stiffer substrates recruited more macrophages. Furthermore, elevated matrix stiffness increased Colony Stimulating Factor 1 (CSF-1) expression in breast cancer cells and reduction of CSF-1 expression on stiffer substrates reduced macrophage recruitment. Thus, our results demonstrate that tissue phenotypes were conserved between stiff and compliant tumors but matrix stiffening altered cell-cell interactions which may be responsible for shifting the phenotypic balance of macrophages residing in the tumor microenvironment towards a pro-tumor progression M2 phenotype. STATEMENT OF SIGNIFICANCE: Cells within tumors are highly heterogeneous, posing challenges with treatment and recurrence. While increased tissue stiffness can promote several hallmarks of cancer, its effects on tumor heterogeneity are unclear. We used single-cell RNA sequencing to investigate the differences in the transcriptional landscapes between stiff and compliant MMTV-PyMT mouse mammary tumors. We found similar compositions of cancer and stromal subpopulations in compliant and stiff tumors but differential intercellular communication and a significantly higher concentration of tumor-promoting, M2-like macrophages in the stiffer tumor microenvironments. Using a biomaterial-based platform, we found that cancer cells seeded on stiffer substrates recruited more macrophages, supporting our in vivo findings. Together, our results demonstrate a key role of matrix stiffness in affecting cell-cell communication and macrophage recruitment.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Neoplasias Mamárias Animais , Animais , Camundongos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Microambiente Tumoral , Macrófagos/metabolismo , Comunicação Celular , Neoplasias Mamárias Animais/patologia , Linhagem Celular Tumoral
5.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38187699

RESUMO

Key to understanding many biological phenomena is knowing the temporal ordering of cellular events, which often require continuous direct observations [1, 2]. An alternative solution involves the utilization of irreversible genetic changes, such as naturally occurring mutations, to create indelible markers that enables retrospective temporal ordering [3-8]. Using NSC-seq, a newly designed and validated multi-purpose single-cell CRISPR platform, we developed a molecular clock approach to record the timing of cellular events and clonality in vivo , while incorporating assigned cell state and lineage information. Using this approach, we uncovered precise timing of tissue-specific cell expansion during murine embryonic development and identified new intestinal epithelial progenitor states by their unique genetic histories. NSC-seq analysis of murine adenomas and single-cell multi-omic profiling of human precancers as part of the Human Tumor Atlas Network (HTAN), including 116 scRNA-seq datasets and clonal analysis of 418 human polyps, demonstrated the occurrence of polyancestral initiation in 15-30% of colonic precancers, revealing their origins from multiple normal founders. Thus, our multimodal framework augments existing single-cell analyses and lays the foundation for in vivo multimodal recording, enabling the tracking of lineage and temporal events during development and tumorigenesis.

6.
Cell Syst ; 13(9): 690-710.e17, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35981544

RESUMO

Small cell lung cancer (SCLC) tumors comprise heterogeneous mixtures of cell states, categorized into neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. NE to non-NE state transitions, fueled by plasticity, likely underlie adaptability to treatment and dismal survival rates. Here, we apply an archetypal analysis to model plasticity by recasting SCLC phenotypic heterogeneity through multi-task evolutionary theory. Cell line and tumor transcriptomics data fit well in a five-dimensional convex polytope whose vertices optimize tasks reminiscent of pulmonary NE cells, the SCLC normal counterparts. These tasks, supported by knowledge and experimental data, include proliferation, slithering, metabolism, secretion, and injury repair, reflecting cancer hallmarks. SCLC subtypes, either at the population or single-cell level, can be positioned in archetypal space by bulk or single-cell transcriptomics, respectively, and characterized as task specialists or multi-task generalists by the distance from archetype vertex signatures. In the archetype space, modeling single-cell plasticity as a Markovian process along an underlying state manifold indicates that task trade-offs, in response to microenvironmental perturbations or treatment, may drive cell plasticity. Stifling phenotypic transitions and plasticity may provide new targets for much-needed translational advances in SCLC. A record of this paper's Transparent Peer Review process is included in the supplemental information.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Plasticidade Celular , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia
7.
STAR Protoc ; 3(3): 101570, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35880121

RESUMO

In droplet-based single-cell RNA-sequencing (scRNA-seq) experiments, cells, along with some of their surrounding buffer and ambient material, are encapsulated into droplets for mRNA capture and barcoding. This protocol details the steps for human gut tissue dissociation using cold active protease, and subsequent isolation of single epithelial cells, with enrichment of viability through washes. Next, the steps for encapsulation on the inDrops scRNA-seq platform are described. This procedure has been demonstrated to be applicable to polyps, cancers, and inflamed tissues. For complete details on the use and execution of this protocol, please refer to Chen et al. (2021).


Assuntos
Neoplasias , Análise de Célula Única , Humanos , Microfluídica , RNA Mensageiro , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
8.
Front Oncol ; 12: 878920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600339

RESUMO

The tumor microenvironment plays a key role in the pathogenesis of colorectal tumors and contains various cell types including epithelial, immune, and mesenchymal cells. Characterization of the interactions between these cell types is necessary for revealing the complex nature of tumors. In this study, we used single-cell RNA-seq (scRNA-seq) to compare the tumor microenvironments between a mouse model of sporadic colorectal adenoma (Lrig1CreERT2/+;Apc2lox14/+) and a mouse model of inflammation-driven colorectal cancer induced by azoxymethane and dextran sodium sulfate (AOM/DSS). While both models develop tumors in the distal colon, we found that the two tumor types have distinct microenvironments. AOM/DSS tumors have an increased abundance of two populations of cancer-associated fibroblasts (CAFs) compared with APC tumors, and we revealed their divergent spatial association with tumor cells using multiplex immunofluorescence (MxIF) imaging. We also identified a unique squamous cell population in AOM/DSS tumors, whose origins were distinct from anal squamous epithelial cells. These cells were in higher proportions upon administration of a chemotherapy regimen of 5-Fluorouracil/Irinotecan. We used computational inference algorithms to predict cell-cell communication mediated by ligand-receptor interactions and downstream pathway activation, and identified potential mechanistic connections between CAFs and tumor cells, as well as CAFs and squamous epithelial cells. This study provides important preclinical insight into the microenvironment of two distinct models of colorectal tumors and reveals unique roles for CAFs and squamous epithelial cells in the AOM/DSS model of inflammation-driven cancer.

9.
Cell ; 184(26): 6262-6280.e26, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34910928

RESUMO

Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.


Assuntos
Pólipos do Colo/patologia , Neoplasias Colorretais/patologia , Microambiente Tumoral , Imunidade Adaptativa , Adenoma/genética , Adenoma/patologia , Adulto , Idoso , Animais , Carcinogênese/genética , Carcinogênese/patologia , Morte Celular , Diferenciação Celular , Pólipos do Colo/genética , Pólipos do Colo/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Heterogeneidade Genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , RNA-Seq , Reprodutibilidade dos Testes , Análise de Célula Única , Microambiente Tumoral/imunologia
10.
Gastroenterology ; 159(6): 2101-2115.e5, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32828819

RESUMO

BACKGROUND & AIMS: Countries endemic for parasitic infestations have a lower incidence of Crohn's disease (CD) than nonendemic countries, and there have been anecdotal reports of the beneficial effects of helminths in CD patients. Tuft cells in the small intestine sense and direct the immune response against eukaryotic parasites. We investigated the activities of tuft cells in patients with CD and mouse models of intestinal inflammation. METHODS: We used microscopy to quantify tuft cells in intestinal specimens from patients with ileal CD (n = 19), healthy individuals (n = 14), and TNFΔARE/+ mice, which develop Crohn's-like ileitis. We performed single-cell RNA sequencing, mass spectrometry, and microbiome profiling of intestinal tissues from wild-type and Atoh1-knockout mice, which have expansion of tuft cells, to study interactions between microbes and tuft cell populations. We assessed microbe dependence of tuft cell populations using microbiome depletion, organoids, and microbe transplant experiments. We used multiplex imaging and cytokine assays to assess alterations in inflammatory response following expansion of tuft cells with succinate administration in TNFΔARE/+ and anti-CD3E CD mouse models. RESULTS: Inflamed ileal tissues from patients and mice had reduced numbers of tuft cells, compared with healthy individuals or wild-type mice. Expansion of tuft cells was associated with increased expression of genes that regulate the tricarboxylic acid cycle, which resulted from microbe production of the metabolite succinate. Experiments in which we manipulated the intestinal microbiota of mice revealed the existence of an ATOH1-independent population of tuft cells that was sensitive to metabolites produced by microbes. Administration of succinate to mice expanded tuft cells and reduced intestinal inflammation in TNFΔARE/+ mice and anti-CD3E-treated mice, increased GATA3+ cells and type 2 cytokines (IL22, IL25, IL13), and decreased RORGT+ cells and type 17 cytokines (IL23) in a tuft cell-dependent manner. CONCLUSIONS: We found that tuft cell expansion reduced chronic intestinal inflammation in mice. Strategies to expand tuft cells might be developed for treatment of CD.


Assuntos
Células Quimiorreceptoras/imunologia , Doença de Crohn/imunologia , Microbioma Gastrointestinal/imunologia , Ileíte/imunologia , Mucosa Intestinal/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Quimiorreceptoras/patologia , Doença de Crohn/microbiologia , Doença de Crohn/patologia , DNA Bacteriano/genética , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Humanos , Ileíte/microbiologia , Ileíte/patologia , Íleo/citologia , Íleo/imunologia , Íleo/microbiologia , Íleo/patologia , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Fatores de Proteção , RNA Ribossômico 16S/genética , RNA-Seq , Análise de Célula Única , Ácido Succínico/imunologia , Ácido Succínico/metabolismo
11.
Sci Signal ; 13(643)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753478

RESUMO

Anti-tumor necrosis factor (anti-TNF) therapy resistance is a major clinical challenge in inflammatory bowel disease (IBD), due, in part, to insufficient understanding of disease-site, protein-level mechanisms. Although proteomics data from IBD mouse models exist, data and phenotype discrepancies contribute to confounding translation from preclinical animal models of disease to clinical cohorts. We developed an approach called translatable components regression (TransComp-R) to overcome interspecies and trans-omic discrepancies between mouse models and human subjects. TransComp-R combines mouse proteomic data with patient pretreatment transcriptomic data to identify molecular features discernable in the mouse data that are predictive of patient response to therapy. Interrogating the TransComp-R models revealed activated integrin pathway signaling in patients with anti-TNF-resistant colonic Crohn's disease (cCD) and ulcerative colitis (UC). As a step toward validation, we performed single-cell RNA sequencing (scRNA-seq) on biopsies from a patient with cCD and analyzed publicly available immune cell proteomics data to characterize the immune and intestinal cell types contributing to anti-TNF resistance. We found that ITGA1 was expressed in T cells and that interactions between these cells and intestinal cell types were associated with resistance to anti-TNF therapy. We experimentally showed that the α1 integrin subunit mediated the effectiveness of anti-TNF therapy in human immune cells. Thus, TransComp-R identified an integrin signaling mechanism with potential therapeutic implications for overcoming anti-TNF therapy resistance. We suggest that TransComp-R is a generalizable framework for addressing species, molecular, and phenotypic discrepancies between model systems and patients to translationally deliver relevant biological insights.


Assuntos
Resistência a Medicamentos/genética , Doenças Inflamatórias Intestinais/tratamento farmacológico , Infliximab/uso terapêutico , Integrina alfa1/genética , Integrinas/genética , Transdução de Sinais/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Fármacos Gastrointestinais/uso terapêutico , Perfilação da Expressão Gênica/métodos , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Integrina alfa1/metabolismo , Integrinas/metabolismo , Masculino , Camundongos , Proteômica/métodos , RNA-Seq/métodos , Análise de Célula Única/métodos , Especificidade da Espécie , Pesquisa Translacional Biomédica/métodos
12.
Nat Commun ; 10(1): 5549, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804471

RESUMO

Dysplasia is considered a key transition state between pre-cancer and cancer in gastric carcinogenesis. However, the cellular or phenotypic heterogeneity and mechanisms of dysplasia progression have not been elucidated. We have established metaplastic and dysplastic organoid lines, derived from Mist1-Kras(G12D) mouse stomach corpus and studied distinct cellular behaviors and characteristics of metaplastic and dysplastic organoids. We also examined functional roles for Kras activation in dysplasia progression using Selumetinib, a MEK inhibitor, which is a downstream mediator of Kras signaling. Here, we report that dysplastic organoids die or show altered cellular behaviors and diminished aggressive behavior in response to MEK inhibition. However, the organoids surviving after MEK inhibition maintain cellular heterogeneity. Two dysplastic stem cell (DSC) populations are also identified in dysplastic cells, which exhibited different clonogenic potentials. Therefore, Kras activation controls cellular dynamics and progression to dysplasia, and DSCs might contribute to cellular heterogeneity in dysplastic cell lineages.


Assuntos
Linhagem da Célula/genética , Transformação Celular Neoplásica/genética , Mucosa Gástrica/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Gástricas/genética , Animais , Benzimidazóis/farmacologia , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/genética , Transformação Celular Neoplásica/metabolismo , Mucosa Gástrica/patologia , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética/efeitos dos fármacos , Humanos , Cinética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estômago/patologia , Neoplasias Gástricas/metabolismo
13.
Am J Physiol Renal Physiol ; 316(5): F847-F855, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30759021

RESUMO

Flow cytometry studies on injured kidney tubules are complicated by the low yield of nucleated single cells. Furthermore, cell-specific responses such as cell cycle dynamics in vivo have conventionally relied on indirect immunohistochemistry and proximal tubule markers that may be downregulated in injury. Here, we report a new tissue dissociation protocol for the kidney with an early fixation step that greatly enhances the yield of single cells. Genetic labeling of the proximal tubule with either mT/mG "tomato" or R26Fucci2aR (Fucci) cell cycle reporter mice allows us to follow proximal tubule-specific changes in cell cycle after renal injury. Image-based flow cytometry (FlowSight) enables gating of the cell cycle and concurrent visualization of the cells with bright field and fluorescence. We used the Fucci mouse in conjunction with FlowSight to identify a discrete polyploid population in proximal tubules after aristolochic acid injury. The tissue dissociation protocol in conjunction with genetic labeling and image-based flow cytometry is a tool that can improve our understanding of any discrete cell population after injury.


Assuntos
Injúria Renal Aguda/patologia , Ciclo Celular , Separação Celular/métodos , Células Epiteliais/patologia , Citometria de Fluxo , Túbulos Renais Proximais/patologia , Fixação de Tecidos/métodos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Animais , Ácidos Aristolóquicos , Biomarcadores/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Genes Reporter , Túbulos Renais Proximais/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Transgênicos , Poliploidia
14.
Methods Mol Biol ; 1884: 215-229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30465206

RESUMO

The emerging phenomenon of cellular heterogeneity in tissue requires single-cell resolution studies. A specific challenge for suspension-based single-cell analysis is the preservation of intact cell states when single cells are isolated from tissue contexts, in order to enable downstream analyses to extract accurate, native information. We have developed DISSECT (Disaggregation for Intracellular Signaling in Single Epithelial Cells from Tissue) coupled to mass cytometry (CyTOF: Cytometry by Time-of-Flight), an experimental approach for profiling intact signaling states of single cells from epithelial tissue specimens. We have previously applied DISSECT-CyTOF to fresh mouse intestinal samples and to Formalin-Fixed, Paraffin-Embedded (FFPE) human colorectal cancer specimens. Here, we present detailed protocols for each of these procedures, as well as a new method for applying DISSECT to cryopreserved tissue slices. We present example data for using DISSECT on a cryopreserved specimen of the human colon to profile its immune and epithelial composition. These techniques can be used for high-resolution studies for monitoring disease-related alternations in different cellular compartments using specimens stored in cryopreserved or FFPE tissue banks.


Assuntos
Células Epiteliais/patologia , Citometria de Fluxo/métodos , Espectrometria de Massas/métodos , Neoplasias/patologia , Análise de Célula Única/métodos , Animais , Criopreservação/instrumentação , Criopreservação/métodos , Células Epiteliais/imunologia , Epitélio/patologia , Fixadores/química , Citometria de Fluxo/instrumentação , Formaldeído/química , Humanos , Espectrometria de Massas/instrumentação , Camundongos , Neoplasias/imunologia , Inclusão em Parafina/instrumentação , Inclusão em Parafina/métodos , Transdução de Sinais/imunologia , Análise de Célula Única/instrumentação , Fixação de Tecidos/instrumentação , Fixação de Tecidos/métodos
15.
PLoS Biol ; 16(10): e2006687, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30346945

RESUMO

Single-cell RNA sequencing (scRNA-seq) has become a powerful tool for the systematic investigation of cellular diversity. As a number of computational tools have been developed to identify and visualize cell populations within a single scRNA-seq dataset, there is a need for methods to quantitatively and statistically define proportional shifts in cell population structures across datasets, such as expansion or shrinkage or emergence or disappearance of cell populations. Here we present sc-UniFrac, a framework to statistically quantify compositional diversity in cell populations between single-cell transcriptome landscapes. sc-UniFrac enables sensitive and robust quantification in simulated and experimental datasets in terms of both population identity and quantity. We have demonstrated the utility of sc-UniFrac in multiple applications, including assessment of biological and technical replicates, classification of tissue phenotypes and regional specification, identification and definition of altered cell infiltrates in tumorigenesis, and benchmarking batch-correction tools. sc-UniFrac provides a framework for quantifying diversity or alterations in cell populations across conditions and has broad utility for gaining insight into tissue-level perturbations at the single-cell resolution.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Análise por Conglomerados , Simulação por Computador , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Análise de Sequência de RNA/estatística & dados numéricos , Análise de Célula Única/estatística & dados numéricos , Software , Fluxo de Trabalho
16.
Cell Death Differ ; 24(5): 855-865, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28304405

RESUMO

Paneth cells (PCs), a secretory population located at the base of the intestinal crypt, support the intestinal stem cells (ISC) with growth factors and participate in innate immunity by releasing antimicrobial peptides, including lysozyme and defensins. PC dysfunction is associated with disorders such as Crohn's disease and necrotizing enterocolitis, but the specific pathways regulating PC development and function are not fully understood. Here we tested the role of the neuregulin receptor ErbB3 in control of PC differentiation and the ISC niche. Intestinal epithelial ErbB3 knockout caused precocious appearance of PCs as early as postnatal day 7, and substantially increased the number of mature PCs in adult mouse ileum. ErbB3 loss had no effect on other secretory lineages, but increased expression of the ISC marker Lgr5. ErbB3-null intestines had elevated levels of the Atoh1 transcription factor, which is required for secretory fate determination, while Atoh1+ cells had reduced ErbB3, suggesting reciprocal negative regulation. ErbB3-null intestinal progenitor cells showed reduced activation of the PI3K-Akt and ERK MAPK pathways. Inhibiting these pathways in HT29 cells increased levels of ATOH1 and the PC marker LYZ. Conversely, ErbB3 activation suppressed LYZ and ATOH1 in a PI3K-dependent manner. Expansion of the PC compartment in ErbB3-null intestines was accompanied with elevated ER stress and inflammation markers, raising the possibility that negative regulation of PCs by ErbB3 is necessary to maintain homeostasis. Taken together, our data suggest that ErbB3 restricts PC numbers through PI3K-mediated suppression of Atoh1 levels leading to inhibition of PC differentiation, with important implications for regulation of the ISC niche.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Celulas de Paneth/metabolismo , Fosfatidilinositol 3-Quinases/genética , Receptor ErbB-3/genética , Nicho de Células-Tronco/genética , Células-Tronco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Comunicação Celular , Contagem de Células , Diferenciação Celular , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Células HT29 , Humanos , Íleo/citologia , Íleo/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Celulas de Paneth/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/citologia
17.
Mol Cell Oncol ; 4(1): e1260191, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197533

RESUMO

An impediment to the understanding of cancer is the heterogeneous nature of cell populations within a tumor microenvironment. We reported a method to query protein signaling in single epithelial cells from formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissues. Here, we discuss the feasibility and limitations of this approach for investigating signaling state heterogeneity.

18.
Sci Signal ; 9(449): rs11, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27729552

RESUMO

Cellular heterogeneity poses a substantial challenge to understanding tissue-level phenotypes and confounds conventional bulk analyses. To analyze signaling at the single-cell level in human tissues, we applied mass cytometry using cytometry time of flight to formalin-fixed, paraffin-embedded (FFPE) normal and diseased intestinal specimens. This technique, called FFPE-DISSECT (disaggregation for intracellular signaling in single epithelial cells from tissue), is a single-cell approach to characterizing signaling states in embedded tissue samples. We applied FFPE-DISSECT coupled to mass cytometry and found differential signaling by tumor necrosis factor-α in intestinal enterocytes, goblet cells, and enteroendocrine cells, implicating the downstream RAS-RAF-MEK pathway in determining goblet cell identity. Application of this technique and computational analyses to human colon specimens confirmed the reduced differentiation in colorectal cancer (CRC) compared to normal colon and revealed increased intratissue and intertissue heterogeneity in CRC with quantitative changes in the regulation of signaling pathways. Specifically, coregulation of the kinases p38 and ERK, the translation regulator 4EBP1, and the transcription factor CREB in proliferating normal colon cells was lost in CRC. Our data suggest that this single-cell approach, applied in conjunction with genomic annotation, enables the rapid and detailed characterization of cellular heterogeneity from clinical repositories of embedded human tissues. This technique can be used to derive cellular landscapes from archived patient samples (beyond CRC) and as a high-resolution tool for disease characterization and subtyping.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/metabolismo , Animais , Feminino , Humanos , Citometria por Imagem , Masculino , Espectrometria de Massas , Camundongos , Inclusão em Parafina
19.
Mol Syst Biol ; 11(10): 835, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26519361

RESUMO

Understanding heterogeneous cellular behaviors in a complex tissue requires the evaluation of signaling networks at single-cell resolution. However, probing signaling in epithelial tissues using cytometry-based single-cell analysis has been confounded by the necessity of single-cell dissociation, where disrupting cell-to-cell connections inherently perturbs native cell signaling states. Here, we demonstrate a novel strategy (Disaggregation for Intracellular Signaling in Single Epithelial Cells from Tissue-DISSECT) that preserves native signaling for Cytometry Time-of-Flight (CyTOF) and fluorescent flow cytometry applications. A 21-plex CyTOF analysis encompassing core signaling and cell-identity markers was performed on the small intestinal epithelium after systemic tumor necrosis factor-alpha (TNF-α) stimulation. Unsupervised and supervised analyses robustly selected signaling features that identify a unique subset of epithelial cells that are sensitized to TNF-α-induced apoptosis in the seemingly homogeneous enterocyte population. Specifically, p-ERK and apoptosis are divergently regulated in neighboring enterocytes within the epithelium, suggesting a mechanism of contact-dependent survival. Our novel single-cell approach can broadly be applied, using both CyTOF and multi-parameter flow cytometry, for investigating normal and diseased cell states in a wide range of epithelial tissues.


Assuntos
Apoptose/fisiologia , Células Epiteliais/metabolismo , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Análise de Célula Única , Fator de Necrose Tumoral alfa/fisiologia , Ativação Enzimática , Humanos
20.
Integr Biol (Camb) ; 7(7): 740-57, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26040649

RESUMO

When functioning properly, the intestine is one of the key interfaces between the human body and its environment. It is responsible for extracting nutrients from our food and excreting our waste products. It provides an environment for a host of healthful microbes and serves as a first defense against pathogenic ones. These processes require tight homeostatic controls, which are provided by the interactions of a complex mix of epithelial, stromal, neural and immune cells, as well as the resident microflora. This homeostasis can be disrupted by invasive microbes, genetic lesions, and carcinogens, resulting in diseases such Clostridium difficile infection, inflammatory bowel disease (IBD) and cancer. Enormous strides have been made in understanding how this important organ functions in health and disease using everything from cell culture systems to animal models to human tissue samples. This has resulted in better therapies for all of these diseases, but there is still significant room for improvement. In the United States alone, 14,000 people per year die of C. difficile, up to 1.6 million people suffer from IBD, and more than 50,000 people die every year from colon cancer. Because these and other intestinal diseases arise from complex interactions between the different components of the gut ecosystem, we propose that systems approaches that address this complexity in an integrative manner may eventually lead to improved therapeutics that deliver lasting cures. This review will discuss the use of systems biology for studying intestinal diseases in vivo with particular emphasis on mouse models. Additionally, it will focus on established experimental techniques that have been used to drive this systems-level analysis, and emerging techniques that will push this field forward in the future.


Assuntos
Modelos Animais de Doenças , Enteropatias/imunologia , Enteropatias/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Modelos Imunológicos , Animais , Simulação por Computador , Citocinas/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Camundongos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA