Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986958

RESUMO

Cancer cell evasion of the immune response is critical to cancer development and metastases. The ability of clinicians to kickstart the immune system to target these rogue cells is an ever-growing area of research and medicine. In this study, we delved into the relationship between lipid metabolism, High Mobility Group Box 1 protein (HMGB1), and immune regulation within non-small cell lung adenocarcinoma (NSCLC), shedding light on novel therapeutic avenues and potential personalized approaches for patients. We found that the expression of stearoyl CoA desaturase 1 (SCD1) was decreased in NSCLC tumors compared to normal tissues. This emphasized the critical role of lipid metabolism in tumor progression. Interestingly, monounsaturated fatty acid (MUFA) availability impacted the expression of programmed death receptor ligand -1 (PD-L1), a pivotal immune checkpoint target in lung cancer cells and immune cells, suggesting a novel approach to modulating the immune response. This study uncovered a complex interplay between HMGB1, SCD1, and PD-L1, influencing the immunological sensitivity of tumors. Our work underscores the importance of understanding the intricate relationships between lipid metabolism and immune modulation to develop more effective NSCLC treatments and personalized therapies. As we continue to explore these connections, we hope to contribute to the ever-evolving field of cancer research, improving patient outcomes and advancing precision medicine in NSCLC.

2.
Oncotarget ; 13: 768-783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634242

RESUMO

Cancer cells undergo alterations in lipid metabolism to support their high energy needs, tumorigenesis and evade an anti-tumor immune response. Alterations in fatty acid production are controlled by multiple enzymes, chiefly Acetyl CoA Carboxylase, ATP-Citrate Lyase, Fatty Acid Synthase, and Stearoyl CoA Desaturase 1. Ovarian cancer (OC) is a common gynecological malignancy with a high rate of aggressive carcinoma progression and drug resistance. The accumulation of unsaturated fatty acids in ovarian cancer supports cell growth, increased cancer cell migration, and worse patient outcomes. Ovarian cancer cells also expand their lipid stores via increased uptake of lipids using fatty acid translocases, fatty acid-binding proteins, and low-density lipoprotein receptors. Furthermore, increased lipogenesis and lipid uptake promote chemotherapy resistance and dampen the adaptive immune response needed to eliminate tumors. In this review, we discuss the role of lipid synthesis and metabolism in driving tumorigenesis and drug resistance in ovarian cancer conferring poor prognosis and outcomes in patients. We also cover some aspects of how lipids fuel ovarian cancer stem cells, and how these metabolic alterations in intracellular lipid content could potentially serve as biomarkers of ovarian cancer.


Assuntos
Metabolismo dos Lipídeos , Neoplasias Ovarianas , Acetil-CoA Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Carcinogênese , Carcinoma Epitelial do Ovário , Ácido Graxo Sintases/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipogênese , Lipoproteínas LDL/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Estearoil-CoA Dessaturase/metabolismo
3.
Pathogens ; 10(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802018

RESUMO

Bartonella bacilliformis (B. bacilliformis), Bartonella henselae (B. henselae), and Bartonella quintana (B. quintana) are bacteria known to cause verruga peruana or bacillary angiomatosis, vascular endothelial growth factor (VEGF)-dependent cutaneous lesions in humans. Given the bacteria's association with the dermal niche and clinical suspicion of occult infection by a dermatologist, we determined if patients with melanoma had evidence of Bartonella spp. infection. Within a one-month period, eight patients previously diagnosed with melanoma volunteered to be tested for evidence of Bartonella spp. exposure/infection. Subsequently, confocal immunohistochemistry and PCR for Bartonella spp. were used to study melanoma tissues from two patients. Blood from seven of the eight patients was either seroreactive, PCR positive, or positive by both modalities for Bartonella spp. exposure. Subsequently, Bartonella organisms that co-localized with VEGFC immunoreactivity were visualized using multi-immunostaining confocal microscopy of thick skin sections from two patients. Using a co-culture model, B. henselae was observed to enter melanoma cell cytoplasm and resulted in increased vascular endothelial growth factor C (VEGFC) and interleukin 8 (IL-8) production. Findings from this small number of patients support the need for future investigations to determine the extent to which Bartonella spp. are a component of the melanoma pathobiome.

4.
Mol Biol Cell ; 31(22): 2423-2424, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33054636

RESUMO

I am just starting my career as a cancer biologist, but I have always been a Black man in America. This means that I have always inhabited a world that generally disregarded my existence in some form or another. It is June 17th, 2020 and protests have been happening for weeks since the killing of George Floyd in Minneapolis. The current state of America may be uneasy for some, but for many Americans, the looming threat of exclusion and violence has been an unwelcome companion since birth. This letter is not about a single person, but the Black academic's experience of race inside and outside of the academy during a time of social upheaval. I have trained in a variety of institutions, big and small, and all the while acutely aware of the impact of my Blackness on my science. The intent of the following is to provoke the reader to reflect on how we as a nation can move toward radically positive change and not incremental adjustments to the status quo. The views expressed are my own and are the result of years of personal experience observing the anti-Black standard in America.


Assuntos
Racismo/prevenção & controle , Racismo/psicologia , Negro ou Afro-Americano/psicologia , Biologia , Humanos , Racismo/tendências , Estados Unidos
5.
Oncol Lett ; 20(5): 165, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32952654

RESUMO

Y-box binding protein 1 (YB-1) is a regulatory protein associated with oncogenesis and poor prognosis in patients with cancer. In the cell, YB-1 functions as a DNA and RNA binding protein that promotes or suppresses expression of target genes. The cancer-promoting activity of YB-1 is mediated through its activation of oncogenes and repression of tumor suppressor genes. Lipogenic enzyme stearoyl-CoA desaturase (SCD1) drives the production of endogenous monounsaturated fatty acids (MUFAs) in cells and protects against toxic buildup of saturated fatty acids. Clear cell renal cell carcinoma (ccRCC) is often characterized by aberrantly high SCD1 expression and cytosolic accumulation of unsaturated fatty acids. In the present study, a proteomics screen of cells treated with inhibitors of SCD1 supported a potential relationship between YB-1 and SCD1. It was revealed that the presence of MUFAs led to increased protein synthesis and increased expression of high molecular weight forms of YB-1 in ccRCC cells, but not in non-tumorigenic cells. Ectopic expression of YB-1 led to decreased expression levels of SCD1 protein and mRNA in ccRCC cell lines. Conversely, targeted knockdown of YB-1 increased SCD1 mRNA abundance. Analysis of ccRCC patient data from The Cancer Proteome Atlas database showed YB-1 expression was negatively associated with survival, whereas SCD1 was associated with improved survival. These data suggested an antagonistic relationship between YB-1 and SCD1 that may influence survival of patients with ccRCC.

6.
Am J Mens Health ; 14(4): 1557988320951321, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32840146

RESUMO

African American (AA) men continue to experience worse health outcomes compared to men of other races/ethnicities. Community-based interventions are known to be effective in health promotion and disease prevention. The program objectives were to (a) increase knowledge and risk awareness of targeted conditions, (b) change health-care-seeking attitudes toward regular primary care among AA men, and (c) improve their lifestyle-related health behaviors by leveraging the influence of women in their lives. The community-engaged educational intervention targeted both men and women and included eight 90-min sessions per cohort. Topics included prostate cancer, cardiovascular disease, diabetes, mental health, health-care access, and healthy lifestyle. Sessions were both didactic and interactive. A pre-/post-intervention questionnaire assessed knowledge. Interviews were conducted with male participants and a focus group discussion (FGD) with women to assess program impact. Interview and FGD transcripts were analyzed for themes and recommendations. Major themes were-increased knowledge/awareness of risk associated with chronic conditions, change in health-care-seeking attitudes, increased self-efficacy to engage the health-care system, and lifestyle changes. Other impacts reported were building community/social support, a safe and enabling learning environment, and enhanced community health status overall. Recommendations included having extended, more in-depth sessions, targeting the younger generation, smaller cohort sizes, and more community-based health programming. Community-engaged health promotion using a cohort model as well as including women can be effective in increasing knowledge, enhancing self-efficacy, and providing the much-needed social support. These can influence health-related behaviors and thus contribute to improving health outcomes for AA men.


Assuntos
Negro ou Afro-Americano , Competência Cultural , Promoção da Saúde/métodos , Disparidades nos Níveis de Saúde , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Grupos Focais , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
7.
Med Res Arch ; 8(10)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33778158

RESUMO

According to the National Institutes of Health, clear cell renal cell carcinoma (ccRCC) is the most common type of Renal Cell Carcinoma (RCC), making up approximately 75% of total renal carcinoma cases. Clear cell Renal Cell Carcinoma is characterized by a significant accumulation of lipids in the cytoplasm, which allows light from microscopes to pass through giving them a "clear" phenotype. Many of these lipids are in the form of fatty acids, both free and incorporated into lipid droplets. RCC is typically associated with a poor prognosis due to the lack of specific symptoms. Some symptoms include blood in urine, fever, lump on the side, weight loss, fatigue, to name a few; all of which can be associated with non-specific, non-cancerous, health conditions that contribute to difficult diagnosis. Treatment of RCC has typically been centered around radical nephrectomy as the standard of care, but due to the potentially small size of lesions and the possibility of causing surgically induced chronic kidney disease, treatments have shifted to more cautious, less invasive approaches. These approaches include active surveillance, nephron-sparing surgery, and other minimally invasive techniques like cryotherapy and renal ablation. Although these techniques have had the desired effect of reducing the number of surgeries, there is still considerable potential for renal impairment and the chance that tumors can grow out of control without surgery. With the difficulty that surrounds the treatment of ccRCC and its considerably high mortality rate amongst urological cancers, it is important to look for novel approaches to improve patient outcomes. This review looks at available literature and our data that suggests the lipogenic enzyme stearoyl-CoA desaturase may be more beneficial to patient survival than once thought. As our understanding of the importance of lipids in cell metabolism and longevity matures, it is important to present new perspectives that present a new understanding of ccRCC and the role of lipids in survival mechanisms engaged by transformed cells during cancer progression. In this review, we provide evidence that pharmacological inhibition of lipid desaturation in renal cancer patients is not without risk, and that the presence of unsaturated fatty acids may be a beneficial factor in patient outcomes. Although more direct experimental evidence is needed to make definitive conclusions, it is clear that the work reviewed herein should challenge our current understanding of cancer biology and may inform novel approaches to the diagnosis and treatment of ccRCC.

8.
Cell Signal ; 47: 52-64, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29559363

RESUMO

The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity [1-3]. The Dsh gene (Dsh/Dvl, in Drosophila and vertebrates respectively) gained popularity when it was discovered that it plays a key role in segment polarity during early embryonic development in Drosophila [4]. Subsequently, the vertebrate homolog of Dishevelled genes were identified in Xenopus (Xdsh), mice (Dvl1, Dvl2, Dvl3), and in humans (DVL1, DVL2, DVL3) [5-10]. Dishevelled functions as a principal component of Wnt signaling pathway and governs several cellular processes including cell proliferation, survival, migration, differentiation, polarity and stem cell renewal. This review will revisit seminal discoveries and also summarize recent advances in characterizing the role of Dishevelled in both normal and pathophysiological settings.


Assuntos
Proteínas Desgrenhadas/metabolismo , Via de Sinalização Wnt , Animais , Proteínas Desgrenhadas/química , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Domínios Proteicos , Processamento de Proteína Pós-Traducional
9.
Genes Cancer ; 6(9-10): 408-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26622943

RESUMO

Methyl-CpG-binding protein-2 (MeCP2) regulates gene expression by recruiting SWI/SNF DNA helicase/ATPase (ATRX) and Histone Deacetylase-1 (HDAC1) to methylated gene regions and modulates heterochromatin association by interacting with Heterochromatin protein-1. As MeCP2 contributes to tumor suppressor gene silencing and its mutation causes Rett Syndrome, we investigated how novel post-translational-modification contributes to its function. Herein we report that upon pharmacological inhibition of SIRT1 in RKO colon and MCF-7 breast cancer cells, endogenous MeCP2 is acetylated at sites critical for binding to DNA and transcriptional regulators. We created an acetylation mimetic mutation in MeCP2 and found it to possess decreased binding to ATRX and HDAC1. Conditions inducing MeCP2 acetylation do not alter its promoter occupancy at a subset of target genes analyzed, but do cause decreased binding to ATRX and HDAC1. We also report here that a specific inhibitor of SIRT1, IV, can be used to selectively decrease H3K27me3 repressive marks on a subset of repressed target gene promoters analyzed. Lastly, we show that RKO cells over-expressing MeCP2 mutant show reduced proliferation compared to those over-expressing MeCP2-wildtype. Our study demonstrates the importance of acetylated lysine residues and suggests their key role in regulating MeCP2 function and its ability to bind transcriptional regulators.

10.
PLoS Pathog ; 11(5): e1004864, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26020637

RESUMO

Quiescent CD4+ T cells restrict human immunodeficiency virus type 1 (HIV-1) infection at early steps of virus replication. Low levels of both deoxyribonucleotide triphosphates (dNTPs) and the biosynthetic enzymes required for their de novo synthesis provide one barrier to infection. CD4+ T cell activation induces metabolic reprogramming that reverses this block and facilitates HIV-1 replication. Here, we show that phospholipase D1 (PLD1) links T cell activation signals to increased HIV-1 permissivity by triggering a c-Myc-dependent transcriptional program that coordinates glucose uptake and nucleotide biosynthesis. Decreasing PLD1 activity pharmacologically or by RNA interference diminished c-Myc-dependent expression during T cell activation at the RNA and protein levels. PLD1 inhibition of HIV-1 infection was partially rescued by adding exogenous deoxyribonucleosides that bypass the need for de novo dNTP synthesis. Moreover, the data indicate that low dNTP levels that impact HIV-1 restriction involve decreased synthesis, and not only increased catabolism of these nucleotides. These findings uncover a unique mechanism of action for PLD1 inhibitors and support their further development as part of a therapeutic combination for HIV-1 and other viral infections dependent on host nucleotide biosynthesis.


Assuntos
Linfócitos T CD4-Positivos/virologia , Desoxirribonucleotídeos/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Fosfolipase D/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Replicação Viral , Apoptose , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células , Células Cultivadas , Replicação do DNA , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Humanos , Ativação Linfocitária , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Int J Mol Sci ; 16(1): 950-65, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25569080

RESUMO

SIRT1, an NAD(+)-dependent deacetylase, has been described in the literature as a major player in the regulation of cellular stress responses. Its expression has been shown to be altered in cancer cells, and it targets both histone and non-histone proteins for deacetylation and thereby alters metabolic programs in response to diverse physiological stress. Interestingly, many of the metabolic pathways that are influenced by SIRT1 are also altered in tumor development. Not only does SIRT1 have the potential to regulate oncogenic factors, it also orchestrates many aspects of metabolism and lipid regulation and recent reports are beginning to connect these areas. SIRT1 influences pathways that provide an alternative means of deriving energy (such as fatty acid oxidation and gluconeogenesis) when a cell encounters nutritive stress, and can therefore lead to altered lipid metabolism in various pathophysiological contexts. This review helps to show the various connections between SIRT1 and major pathways in cellular metabolism and the consequence of SIRT1 deregulation on carcinogenesis and lipid metabolism.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Neoplasias/patologia , Sirtuína 1/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Metabolismo Energético , Ácidos Graxos/biossíntese , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Humanos , Neoplasias/metabolismo , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo
12.
PLoS One ; 9(6): e98861, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24897117

RESUMO

The Wnt signaling pathway is often chronically activated in diverse human tumors, and the Frizzled (FZD) family of receptors for Wnt ligands, are central to propagating oncogenic signals in a ß-catenin-dependent and independent manner. SIRT1 is a class III histone deacetylase (HDAC) that deacetylates histone and non-histone proteins to regulate gene transcription and protein function. We previously demonstrated that SIRT1 loss of function led to a significant decrease in the levels of Dishevelled (Dvl) proteins. To further explore this connection between the sirtuins and components of the Wnt pathway, we analyzed sirtuin-mediated regulation of FZD proteins. Here we explore the contribution of sirtuin deacetylases in promoting constitutive Wnt pathway activation in breast cancer cells. We demonstrate that the use of small molecule inhibitors of SIRT1 and SIRT2, and siRNA specific to SIRT1, all reduce the levels of FZD7 mRNA. We further demonstrate that pharmacologic inhibition of SIRT1/2 causes a marked reduction in FZD7 protein levels. Additionally, we show that ß-catenin and c-Jun occupy the 7 kb region upstream of the transcription start site of the FZD7 gene, and SIRT1 inhibition leads to a reduction in the occupancy of both ß-catenin and c-Jun at points along this region. This work uncovers a new mechanism for the regulation of FZD7 and provides a critical new link between the sirtuins and FZD7, one of the earliest nodal points from which oncogenic Wnt signaling emanates. This study shows that inhibition of specific sirtuins may provide a unique strategy for inhibiting the constitutively active Wnt pathway at the level of the receptor.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores Frizzled/genética , Regulação Neoplásica da Expressão Gênica , Sirtuína 1/metabolismo , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Humanos , Naftalenos/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica , Pirimidinonas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sirtuína 1/antagonistas & inibidores , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/metabolismo , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA