Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nucleic Acids Res ; 51(8): 3631-3649, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808431

RESUMO

PBRM1 is a subunit of the PBAF chromatin remodeling complex, which is mutated in 40-50% of clear cell renal cell carcinoma patients. It is thought to largely function as a chromatin binding subunit of the PBAF complex, but the molecular mechanism underlying this activity is not fully known. PBRM1 contains six tandem bromodomains which are known to cooperate in binding of nucleosomes acetylated at histone H3 lysine 14 (H3K14ac). Here, we demonstrate that the second and fourth bromodomains from PBRM1 also bind nucleic acids, selectively associating with double stranded RNA elements. Disruption of the RNA binding pocket is found to compromise PBRM1 chromatin binding and inhibit PBRM1-mediated cellular growth effects.


Assuntos
Cromatina , Neoplasias Renais , Humanos , Cromatina/genética , RNA/genética , Proteínas Nucleares/metabolismo , Histonas/metabolismo , Neoplasias Renais/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
4.
Front Genome Ed ; 2: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34713217

RESUMO

In mammals over 65% of the total body iron is located within erythrocytes in the heme moieties of hemoglobin. Iron homeostasis requires iron absorbed from the diet by the gut as well as recycling of iron after the destruction of senescent erythrocytes. Senescent erythrocytes are engulfed by reticuloendothelial system macrophages where hemoglobin is broken down in the lysosomes, releasing heme for iron recovery in the cytoplasm. We recently showed that the SLC48A1 protein is responsible for transporting heme from the lysosome to the cytoplasm. CRISPR generated SLC48A1-deficient mice accumulate heme in their reticuloendothelial system macrophages as hemozoin crystals. Here we describe additional features of SLC48A1-deficient mice. We show that visible hemozoin first appears in the reticuloendothelial system macrophages of SLC48A1-deficient mice at 8 days of age, indicating the onset of erythrocyte recycling. Evaluation of normal and SLC48A1-deficient mice on iron-controlled diets show that SLC48A1-mediated iron recycling is equivalent to at least 10 parts per million of dietary iron. We propose that mutations in human SLC48A1 could contribute to idiopathic iron disorders.

5.
Elife ; 82019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571584

RESUMO

Free heme is cytotoxic as exemplified by hemolytic diseases and genetic deficiencies in heme recycling and detoxifying pathways. Thus, intracellular accumulation of heme has not been observed in mammalian cells to date. Here we show that mice deficient for the heme transporter SLC48A1 (also known as HRG1) accumulate over ten-fold excess heme in reticuloendothelial macrophage lysosomes that are 10 to 100 times larger than normal. Macrophages tolerate these high concentrations of heme by crystallizing them into hemozoin, which heretofore has only been found in blood-feeding organisms. SLC48A1 deficiency results in impaired erythroid maturation and an inability to systemically respond to iron deficiency. Complete heme tolerance requires a fully-operational heme degradation pathway as haplo insufficiency of HMOX1 combined with SLC48A1 inactivation causes perinatal lethality demonstrating synthetic lethal interactions between heme transport and degradation. Our studies establish the formation of hemozoin by mammals as a previously unsuspected heme tolerance pathway.


Specialized cells, known as red blood cells, are responsible for transporting oxygen to various organs in the body. Each red blood cell contains over a billion molecules of heme which make up the iron containing portion of the hemoglobin protein that binds and transports oxygen. When red blood cells reach the end of their life, they are degraded, and the heme and iron inside them is recycled to produce new red blood cells. Heme, however, is highly toxic to cells, and can cause severe tissue damage if not properly removed. Scavenger cells called macrophages perform this recycling role in the spleen, liver and bone marrow. Collectively, macrophages can process around five million red blood cells every second or about 100 trillion heme molecules. But, it is unclear how they are able to handle such enormous volumes. Macrophages isolated from human and mice have been shown to transport heme from damaged red blood cells using a protein called HRG1. To investigate the role HRG1 plays in heme-iron recycling, Pek et al. used a gene editing tool known an CRISPR/Cas9 to remove the gene for HRG1 from the macrophages of mice. If HRG1 is a major part of this process, removing the gene should result in a build-up of toxic heme and eventual death of the mouse. But, rather than dying of heme-iron overload as expected, these mutant mice managed to survive. Pek et al. found that despite being unable to recycle heme, these mice were still able to make new red blood cells as long as they had a diet that was rich in iron. However, the darkening color of the spleen, bone marrow, and liver in these HRG1 deficient mice indicated that these mice were still accumulating high levels of heme. Further experiments revealed that these mice protected themselves from toxicity by converting the excess heme into crystals called hemozoin. This method of detoxification is commonly seen in blood-feeding parasites, and this is the first time it has been observed in a mammal. These crystals invite new questions about how mammals recycle heme and what happens when this process goes wrong. The next step is to ask whether humans also start to make hemozoin if the gene for HRG1 is faulty. If so, this could open a new avenue of exploration into treatments for red blood cell diseases like anemia and iron overload.


Assuntos
Heme/toxicidade , Hemeproteínas/metabolismo , Macrófagos/metabolismo , Animais , Heme Oxigenase-1/metabolismo , Hemeproteínas/deficiência , Proteínas de Membrana/metabolismo , Camundongos
6.
Leukemia ; 33(12): 2884-2897, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31097785

RESUMO

Although the over-expression of angiogenic factors is reported in diffuse large B-cell lymphoma (DLBCL), the poor response to anti-VEGF drugs observed in clinical trials suggests that angiogenesis in these tumours might be driven by VEGF-independent pathways. We show that sphingosine kinase-1 (SPHK1), which generates the potent bioactive sphingolipid sphingosine-1-phosphate (S1P), is over-expressed in DLBCL. A meta-analysis of over 2000 cases revealed that genes correlated with SPHK1 mRNA expression in DLBCL were significantly enriched for tumour angiogenesis meta-signature genes; an effect evident in both major cell of origin (COO) and stromal subtypes. Moreover, we found that S1P induces angiogenic signalling and a gene expression programme that is present within the tumour vasculature of SPHK1-expressing DLBCL. Importantly, S1PR1 functional antagonists, including Siponimod, and the S1P neutralising antibody, Sphingomab, inhibited S1P signalling in DLBCL cells in vitro. Furthermore, Siponimod, also reduced angiogenesis and tumour growth in an S1P-producing mouse model of angiogenic DLBCL. Our data define a potential role for S1P signalling in driving an angiogenic gene expression programme in the tumour vasculature of DLBCL and suggest novel opportunities to target S1P-mediated angiogenesis in patients with DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Lisofosfolipídeos/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Transcriptoma , Animais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Linfoma Difuso de Grandes Células B/patologia , Lisofosfolipídeos/genética , Camundongos , RNA Mensageiro/genética , Esfingosina/genética , Esfingosina/metabolismo
7.
Pathol Oncol Res ; 25(3): 1223-1231, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30739251

RESUMO

SLIT2 has been classified as a major tumour suppressor gene due to its frequent inactivation in different cancer types. However, alterations of SLIT2 expression and relation to patient outcomes in diffuse large B cell lymphoma (DLBCL) remain undefined. The aim of this study was to investigate the expression and the methylation status of SLIT2 gene as well as its relation to patient outcomes in DLBCL. Immunohistochemical (IHC) staining was carried out to detect the expression of SLIT2 in a series of 108 DLBCL cases. Re-analysis of previously published dataset (GSE10846) that measured gene expression in DLBCL patients who had received CHOP or R-CHOP therapy was performed to identify associations between SLIT2 and patients survival. Laser capture microdissection was performed to isolate GC B cells and DLBCL primary tumor cells. Bisulfite treatment and methylation-specific PCR (MSP) analysis were done to assess SLIT2 promotor methylation status. We report that the expression of SLIT2 protein was reduced in a subset of DLBCL cases and this was significantly correlated with advanced clinical stage (p = 0.041) and was an independent predictor of worse overall survival (OS) (p = 0.012). Re-analysis of published gene expression data showed that reduced SLIT2 mRNA expression was significantly correlated with worse OS in R-CHOP-treated ABC DLBCL patients (p = <0.01). Hypermethylation of the SLIT2 promotor was significantly correlated with low SLIT2 expression (p = 0.009). Our results provide a novel evidence of reduced expression of SLIT2 that is associated with promoter hypermethylation and adverse outcomes in patients with DLBCL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Metilação de DNA , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Linfoma Difuso de Grandes Células B/mortalidade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Ciclofosfamida/administração & dosagem , Doxorrubicina/administração & dosagem , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Prednisona/administração & dosagem , Prognóstico , Estudos Retrospectivos , Rituximab/administração & dosagem , Taxa de Sobrevida , Vincristina/administração & dosagem
8.
J Pathol ; 248(2): 142-154, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30666658

RESUMO

The Epstein-Barr virus (EBV) is found almost exclusively in the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), yet its contribution to this tumour remains poorly understood. We have focused on the EBV-encoded latent membrane protein-1 (LMP1), a constitutively activated CD40 homologue expressed in almost all EBV-positive DLBCLs and which can disrupt germinal centre (GC) formation and drive lymphomagenesis in mice. Comparison of the transcriptional changes that follow LMP1 expression with those that follow transient CD40 signalling in human GC B cells enabled us to define pathogenic targets of LMP1 aberrantly expressed in ABC-DLBCL. These included the down-regulation of S1PR2, a sphingosine-1-phosphate (S1P) receptor that is transcriptionally down-regulated in ABC-DLBCL, and when genetically ablated leads to DLBCL in mice. Consistent with this, we found that LMP1-expressing primary ABC-DLBCLs were significantly more likely to lack S1PR2 expression than were LMP1-negative tumours. Furthermore, we showed that the down-regulation of S1PR2 by LMP1 drives a signalling loop leading to constitutive activation of the phosphatidylinositol-3-kinase (PI3-K) pathway. Finally, core LMP1-PI3-K targets were enriched for lymphoma-related transcription factors and genes associated with shorter overall survival in patients with ABC-DLBCL. Our data identify a novel function for LMP1 in aggressive DLBCL. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Proteínas da Matriz Viral/metabolismo , Antígenos CD40/genética , Antígenos CD40/metabolismo , Linhagem Celular Tumoral , Transformação Celular Viral , Bases de Dados Genéticas , Infecções por Vírus Epstein-Barr/mortalidade , Regulação Neoplásica da Expressão Gênica , Herpesvirus Humano 4/genética , Interações Hospedeiro-Patógeno , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma Difuso de Grandes Células B/virologia , Fosfatidilinositol 3-Quinase/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato/genética , Proteínas da Matriz Viral/genética
9.
Nat Commun ; 9(1): 1699, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703888

RESUMO

Plasticity, the capacity of an organism to respond to its environment, is thought to evolve through changes in development altering the integration of environmental cues. In polyphenism, a discontinuous plastic response produces two or more phenotypic morphs. Here we describe evolutionary change in wing polyphenism and its underlying developmental regulation in natural populations of the red-shouldered soapberry bug, Jadera haematoloma (Insecta: Hemiptera: Rhopalidae) that have adapted to a novel host plant. We find differences in the fecundity of morphs in both sexes and in adult expression of insulin signaling components in the gonads. Further, the plastic response of ancestral-state bugs can be shifted to resemble the reaction norm of derived bugs by the introduction of exogenous insulin or RNA interference targeting the insulin signaling component encoded by FoxO. These results suggest that insulin signaling may be one pathway involved in the evolution of this polyphenism, allowing adaptation to a novel nutritional environment.


Assuntos
Adaptação Fisiológica/genética , Heterópteros/fisiologia , Insulina/metabolismo , Fenótipo , Transdução de Sinais/genética , Animais , Evolução Molecular , Comportamento Alimentar/fisiologia , Feminino , Masculino , Seleção Genética/fisiologia , Fatores Sexuais , Asas de Animais/fisiologia
10.
Mol Cell Proteomics ; 13(12): 3507-18, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25231459

RESUMO

The dysregulation of protein oxidative post-translational modifications has been implicated in stress-related diseases. Trx1 is a key reductase that reduces specific disulfide bonds and other cysteine post-translational modifications. Although commonly in the cytoplasm, Trx1 can also modulate transcription in the nucleus. However, few Trx1 nuclear targets have been identified because of the low Trx1 abundance in the nucleus. Here, we report the large-scale proteomics identification of nuclear Trx1 targets in human neuroblastoma cells using an affinity capture strategy wherein a Trx1C35S mutant is expressed. The wild-type Trx1 contains a conserved C32XXC35 motif, and the C32 thiol initiates the reduction of a target disulfide bond by forming an intermolecular disulfide with one of the oxidized target cysteines, resulting in a transient Trx1-target protein complex. The reduction is rapidly consummated by the donation of a C35 proton to the target molecule, forming a Trx1 C32-C35 disulfide, and results in the concurrent release of the target protein containing reduced thiols. By introducing a point mutation (C35 to S35) in Trx1, we ablated the rapid dissociation of Trx1 from its reduction targets, thereby allowing the identification of 45 putative nuclear Trx1 targets. Unexpectedly, we found that PSIP1, also known as LEDGF, was sensitive to both oxidation and Trx1 reduction at Cys 204. LEDGF is a transcription activator that is vital for regulating cell survival during HIV-1 infection. Overall, this study suggests that Trx1 may play a broader role than previously believed that might include regulating transcription, RNA processing, and nuclear pore function in human cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Cisteína/metabolismo , Neurônios/metabolismo , Tiorredoxinas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Linhagem Celular Tumoral , Cisteína/química , Citoplasma/metabolismo , Dissulfetos/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mutação , Neurônios/citologia , Oxirredução , Mapeamento de Interação de Proteínas , Transdução de Sinais , Tiorredoxinas/genética , Fatores de Transcrição/genética , Transcrição Gênica
11.
Pharmacogenet Genomics ; 20(9): 532-6, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20625347

RESUMO

BACKGROUND: Angioedema is a rare adverse effect of angiotensin-converting enzyme (ACE) inhibitors, which occurs more commonly in women and black Americans. Angioedema is thought to result from decreased degradation of vasoactive peptides. During ACE inhibition, bradykinin is primarily inactivated by aminopeptidase P (APP). Earlier studies have provided conflicting data with regard to serum APP activity in patients with a history of ACE inhibitor-associated angioedema. A single nucleotide polymorphism, -2399C>A (rs3788853, C-2399A), in XPNPEP2, the X-linked gene that encodes membranous APP, has been reported to associate with APP activity. OBJECTIVE: To test the hypothesis that the relationship between XPNPEP2 C-2399A genotype and APP activity or ACE inhibitor-associated angioedema is sex-dependent and race-dependent. METHODS: We compared C-2399A genotype frequencies in 169 cases with a history of ACE inhibitor-associated angioedema and 397 ACE inhibitor-exposed controls. Controls were prespecified to be 50% white, 50% black, and 50% women. Cases and controls were group matched for age and smoking. RESULTS: XPNPEP2 C-2399A genotype associated with serum APP activity in both men and women. Serum APP activity was lower in men than in women, independent of genotype. XPNPEP2 -2399 A/ genotype was associated with an increased risk of angioedema in men [odds ratio 2.17 (1.09-4.32), P=0.03] in multivariate analysis. The A/ genotype was associated with angioedema in black men (P=0.03) but not in white men. CONCLUSION: APP activity is lower in men and the XPNPEP2 C-2399A polymorphism associates with ACE inhibitor-associated angioedema in men but not women.


Assuntos
Aminopeptidases/genética , Angioedema/induzido quimicamente , Angioedema/etnologia , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Caracteres Sexuais , Angioedema/enzimologia , Angioedema/genética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Estudos de Casos e Controles , Feminino , Frequência do Gene/efeitos dos fármacos , Frequência do Gene/genética , Estudos de Associação Genética , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada
12.
Blood ; 107(2): 689-97, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16189272

RESUMO

Anaplastic large-cell lymphomas (ALCLs) carry chromosome translocations in which the anaplastic lymphoma kinase (ALK) gene is fused to several partners, most frequently, the NPM1 gene. We have demonstrated that the constitutive activation of ALK fusion proteins results in cellular transformation and lymphoid neoplasia. Herein, we specifically down-regulated ALK protein expression by using small hairpin RNA (shRNA) targeting a sequence coding for the catalytic domain of ALK. The ablation of ALK leads to the down-modulation of known ALK downstream effectors, cell growth arrest, and reversion of the transformed phenotype of ALK(+) mouse embryonic fibroblasts in vitro and in vivo. In human ALCL cells lentiviral-mediated ALK knock-down leads to G(1) cell-cycle arrest and apoptosis in vitro and tumor growth inhibition and regression in vivo. Using a specific approach we have demonstrated that the survival and growth of ALK(+) ALCLs are strictly dependent on ALK activation and signaling. Therefore, ALK is a viable target for therapeutic intervention and its inactivation might represent a pivotal approach for the treatment of ALK lymphomas and other ALK-dependent human tumors.


Assuntos
Apoptose , Linfoma Anaplásico de Células Grandes/enzimologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/genética , Quinase do Linfoma Anaplásico , Animais , Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica , Fibroblastos , Imunofluorescência , Humanos , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Camundongos , Camundongos Nus , Nucleofosmina , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases , Retroviridae/genética , Transfecção
13.
Cell Cycle ; 4(9): 1131-3, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16082218

RESUMO

Signal transducers and activators of transcription (STAT) regulate a plethora of cytokine responses. Recently, aberrant signaling by STAT proteins has been demonstrated to play important roles in the pathogenesis of many neoplasms, by promoting cell cycle progression and survival, stimulating angiogenesis, and impairing immunological responses and tumor surveillance. We have developed genetic tools to evaluate STAT-dependent malignancy and showed that survival and growth of lymphoid malignancies requires expression of STAT3. In contrast, loss of STAT3 in normal cells does not impair their growth or survival; but in spite of this apparent dispensability of STAT3, STAT3-null fibroblasts are resistant to transformation by a variety of oncogenes. The precise molecular mechanisms responsible for the tumorigenic activity of STAT3 have been only partially elucidated. While the tyrosine phosphorylation of STAT3, which is indicative of its signal-dependent activation, is a common occurrence in tumors, and appears to play a crucial role in some malignancies, a variety of new data suggest that it can be dispensable under some circumstances and STAT3 can participate in transformation through novel and non-canonical mechanisms. The discovery and dissection of non-canonical modes of STAT3 action will open new avenues for the design of effective therapeutics capable of neutralizing the tumorigenic properties of this molecule.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/tratamento farmacológico , Fator de Transcrição STAT3/fisiologia , Animais , Ciclo Celular , Sobrevivência Celular , Fibroblastos/metabolismo , Humanos , Camundongos , Neoplasias/patologia , Neovascularização Patológica , Fosforilação , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Tirosina/química
14.
Nat Med ; 11(6): 623-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15895073

RESUMO

Anaplastic large cell lymphomas (ALCLs) are caused by chromosomal translocations that juxtapose the anaplastic lymphoma kinase (ALK) proto-oncogene to a dimerization partner, resulting in constitutive expression of ALK and ALK tyrosine kinase activity. One substrate of activated ALK in human ALCLs is the transcription factor Stat3, and its phosphorylation is accurately recapitulated in a new nucleophosmin (NPM)-ALK transgenic mouse model of lymphomagenesis. Here we show by gene targeting that Stat3 is required for the transformation of mouse embryonic fibroblasts in vitro, for the development of B-cell lymphoma in transgenic mice and for the growth and survival of both human and mouse NPM-ALK-transformed B and T cells. Ablation of Stat3 expression by antisense oligonucleotides significantly (P < 0.0001) impaired the growth of human and mouse NPM-ALK tumors in vivo. Pharmacological ablation of Stat3 represents a new candidate approach for the treatment of human lymphoma


Assuntos
Transformação Celular Neoplásica , Proteínas de Ligação a DNA/fisiologia , Linfoma Difuso de Grandes Células B/fisiopatologia , Proteínas Tirosina Quinases/fisiologia , Transativadores/fisiologia , Quinase do Linfoma Anaplásico , Animais , Linhagem Celular , Fibroblastos/fisiologia , Humanos , Linfoma de Células T/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Dados de Sequência Molecular , Mieloma Múltiplo/fisiopatologia , Oligonucleotídeos Antissenso/farmacologia , Proto-Oncogene Mas , Receptores Proteína Tirosina Quinases , Fator de Transcrição STAT3
15.
J Immunol ; 174(3): 1405-15, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15661898

RESUMO

Although T cells infiltrate many types of murine and human neoplasms, in many instances tumor-specific cytotoxicity is not observed. Strategies to stimulate CTL-mediated antitumor immunity have included in vitro stimulation and/or genetic engineering of T cells, followed by adoptive transfer into tumor-bearing hosts. In this model of B cell lymphoma in SJL/J mice, we used Tim-3(+) T-bet(+) Th1 cells to facilitate the development of tumor-specific CTL. Tumor-specific Th1 cell lines were polarized with IL-12 during in vitro stimulation and long term maintenance. As few as 5 million Tim-3(+) T-bet(+) Th1 cells enabled recipients to resist growth of malignant transplantable cells. In addition, similar numbers of Th1 cells injected into 2- to 3-mo-old mice inhibited development of the spontaneous primary lymphomas, which normally arise in 90% of aging mice. CFSE(+) Th1 cells colocalized with injected tumor cells in vivo and formed conjugates with the tumor cells within follicles, whereas in nontumor-challenged recipients the CFSE(+) Th1 cells localized only within the T cell zones of the spleen. These results provide evidence that adoptive immunotherapy with Tim-3(+) T-bet(+) tumor-specific Th1 cells can be used to induce host cytotoxic responses that inhibit the development and growth of neoplastic cells.


Assuntos
Diferenciação Celular/imunologia , Epitopos de Linfócito T/imunologia , Linfoma de Células B/patologia , Linfoma de Células B/prevenção & controle , Receptores Virais/biossíntese , Células Th1/imunologia , Células Th1/patologia , Fatores de Transcrição/biossíntese , Transferência Adotiva , Animais , Divisão Celular/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Proteínas de Ligação a DNA/fisiologia , Receptor Celular 2 do Vírus da Hepatite A , Interleucina-12/fisiologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Linfoma de Células B/imunologia , Camundongos , Fatores de Transcrição NFATC , Transplante de Neoplasias , Proteínas Nucleares/fisiologia , Proteínas com Domínio T , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Células Th1/transplante , Fatores de Transcrição/fisiologia
16.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 10): 1770-9, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15388923

RESUMO

Aminopeptidase P (APPro) is a metalloprotease whose active site includes a dinuclear manganese(II) cluster. The enzyme cleaves the N-terminal residue from a polypeptide when the second residue is proline. A complex of Escherichia coli APPro (EcAPPro) with an inhibitor, apstatin [N-(2S,3R)-3-amino-2-hydroxy-4-phenyl-butanoyl-L-prolyl-L-prolyl-L-alaninamide], has been crystallized. Apstatin binds to the active site of EcAPPro with its N-terminal amino group coordinated to one of the two Mn(II) atoms at the metal centre. The apstatin hydroxyl group replaces a hydroxide ion which bridges the two metal atoms in the native enzyme. The first proline residue of apstatin lies in a small hydrophobic cleft. The structure of the apstatin-EcAPPro complex has been refined at 2.3 A resolution with residuals R = 0.179 and R(free) = 0.204. The structure of the complex illustrates how apstatin inhibits APPro and suggests how substrates may bind to the enzyme, but the basis of the proline-specificity remains elusive.


Assuntos
Aminopeptidases/química , Escherichia coli/enzimologia , Peptídeos/química , Sequência de Aminoácidos , Aminopeptidases/antagonistas & inibidores , Sítios de Ligação , Catálise , Cristalografia por Raios X , Hidróxidos/química , Íons , Manganês/química , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Prolina/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Software
17.
Am J Pathol ; 163(2): 423-32, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12875964

RESUMO

The ataxia telangiectasia mutated (ATM) protein plays a central role in the cellular response to DNA double-strand breaks (DSBs). Developmentally programmed DSBs are restricted to cellular subsets within lymphoid tissues and we asked whether ATM expression is differentially regulated during lymphoid differentiation. We showed that immature B cells in bone marrow and immature T cells of the thymic cortex were negative or weakly ATM-positive. T cells of thymic medulla and peripheral tissues strongly expressed ATM. High levels of ATM were present in the B lymphocytes of the mantle zone and in plasma cells, while the majority of germinal center B cells were negative or weakly labeled. Therefore, ATM expression appears to be down-regulated at those stages of lymphoid development where physiological DNA DSBs occur. In B-chronic lymphocytic leukemia and mantle cell lymphoma we observed two categories: ATM-negative tumors, most likely reflecting the presence of ATM mutation, and tumors with abundant ATM expression. Most follicular center-cell lymphomas and diffuse large B-cell lymphomas, which rarely show inactivation of the ATM gene, were negative or weakly ATM-positive. Tumor cells from most cases of Hodgkin's disease were ATM-negative. Therefore, unless ATM inactivation occurs, ATM expression in lymphoid tumors is likely to reflect their cellular origin. As a result, immunostaining to identify lymphoid neoplasias with ATM inactivation might only be feasible for tumors derived from the stages where ATM is constitutively highly expressed.


Assuntos
Linfócitos B/fisiologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Tecido Linfoide/metabolismo , Linfoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/fisiologia , Anticorpos Monoclonais/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Diferenciação Celular , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA , Doença de Hodgkin/metabolismo , Doença de Hodgkin/patologia , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Tecido Linfoide/citologia , Tecido Linfoide/patologia , Linfoma/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor
18.
Blood ; 101(5): 1919-27, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12424201

RESUMO

Anaplastic Large Cell Lymphomas (ALCLs) carry translocations in which the anaplastic lymphoma kinase (ALK) gene is juxtaposed to various genes, the most common of which is the NPM/B23 gene. ALK fusion proteins result in the constitutive activation of ALK tyrosine kinase, thereby enhancing proliferation and increasing cell survival. A direct role for NPM-ALK in cellular transformation has been shown in vitro with immortalized cell lines and in vivo using retroviral transfer experiments. Nonetheless, there is no direct evidence of its oncogenic potential in T lymphocytes, which represent the most common target of ALK chimeras. Here, we describe a new mouse model of lymphomagenesis in which human NPM-ALK transcription was targeted to T cells. NPM-ALK transgenic (Tg) mice were born with the expected mendelian distribution, normal lymphoid organs, and a normal number and proportion of helper and suppressor T cells. However, after a short period of latency, all NPM-ALK Tg mice developed malignant lymphoproliferative disorders (mean survival, 18 weeks). NPM-ALK Tg thymic lymphomas displayed a T-cell phenotype characteristic of immature thymocytes and frequently coexpressed surface CD30. A subset of the NPM-ALK Tg mice also developed clonal B-cell plasma cell neoplasms. These tumors arose in peripheral lymphoid organs (plasmacytomas) or within the bone marrow and often led to peripheral neuropathies and limb paralysis. Our NPM-ALK Tg mice are a suitable model to dissect the molecular mechanisms of ALK-mediated transformation and to investigate the efficacy of new therapeutic approaches for the treatment of human ALCL in vivo.


Assuntos
Transformação Celular Neoplásica/genética , Linfoma de Células T/genética , Plasmocitoma/genética , Proteínas Tirosina Quinases/fisiologia , Neoplasias do Timo/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Janus Quinase 3 , Tecido Linfoide/patologia , Linfoma de Células B/genética , Linfoma de Células B/patologia , Linfoma de Células T/patologia , Transtornos Linfoproliferativos/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Plasmocitoma/patologia , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Recombinantes de Fusão/fisiologia , Fator de Transcrição STAT3 , Transdução de Sinais , Neoplasias do Timo/patologia , Transativadores/metabolismo
19.
J Immunol ; 170(1): 218-27, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12496403

RESUMO

Mammary tumor virus (Mtv29)-encoded superantigen expressed by SJL/J mouse B cell lymphomas stimulates CD4+V16+ T cells and thereby acquires T cell help necessary for lymphoma growth. Mtv29 mouse mammary tumor virus env transcriptional activator (META) env-controlled Mtv29 superantigen (vSAg29) mRNA transcripts (1.8 kb) are not expressed in normal B or other somatic cells. Real-time PCR-based assays with DNA from normal SJL liver and vSAg29- lymphoma (cNJ101), digested with methylation-sensitive enzymes, showed hypermethylation at AvaI, FspI, HpaII, ThaI, and the distal HgaI sites of the META env, but vSAg29+ lymphoma cells showed significant demethylation at AvaI, HpaII, and the distal HgaI sites. The distal HgaI site that is adjacent to an Ikaros binding site is significantly demethylated in the META env DNA from primary lymphomas. Gel shift assays showed binding of Ikaros to a sequence representing this region in the META env. SJL lymphomas expressed the Ikaros isoform Ik6 that was absent in normal B cells. vSAg29+ cells exhibited increased DNaseI accessibility to chromatin at the vSAg29 initiation site. Treatment of cNJ101 cells with a demethylating agent, 5-azacytidine, and a histone deacetylase inhibitor, trichostatin A, caused hypomethylation at AvaI, HpaII, and distal HgaI sites and led to chromatin structural change at the vSAg29 initiation site, accompanied by the expression of vSAg29 transcripts. This enabled cNJ101 cells to stimulate SJL lymphoma-responsive CD4+V16+ T hybridoma cells. Thus, demethylation at the distal HgaI site of the Mtv29 META env permits vSAg29 expression, which may have an impact on the development of germinal center-derived B cell lymphomas of SJL/J mice.


Assuntos
Cromatina/química , Proteínas de Ligação a DNA , Genes env/fisiologia , Linfoma de Células B/imunologia , Vírus do Tumor Mamário do Camundongo/imunologia , Superantígenos/genética , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica/imunologia , Ativação Transcricional/imunologia , Animais , Azacitidina/farmacologia , Cromatina/enzimologia , Cromatina/metabolismo , Metilação de DNA , Desoxirribonuclease I/metabolismo , Feminino , Ácidos Hidroxâmicos/farmacologia , Fator de Transcrição Ikaros , Linfoma de Células B/genética , Linfoma de Células B/virologia , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Regiões Promotoras Genéticas/imunologia , RNA Mensageiro/biossíntese , Infecções por Retroviridae/genética , Infecções por Retroviridae/imunologia , Superantígenos/metabolismo , Transativadores/metabolismo , Células Tumorais Cultivadas , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/imunologia
20.
Leuk Res ; 26(6): 577-90, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12007506

RESUMO

The B cell lymphomas (RCS) that develop spontaneously in 90% of aging SJL/J mice stimulate syngeneic CD4+ Vbeta16+ Th2 cells to produce cytokines, such as IL-4 and IL-5, which promote lymphoma growth. Although RCS cells express a unique superantigen (vSAg) encoded by an endogenous MMTV (Mtv-29) provirus that also elicits IFN-gamma production from naïve syngeneic lymphoid cells, there is no development of RCS-specific cytotoxicity. However, addition of IL-12 to co-cultures of SJL spleen and irradiated (gamma-)RCS cells resulted in the appearance of effector cells that killed RCS and NK-susceptible target cells. Antibody depletion studies revealed at least two types of RCS/IL-12-induced cytotoxic cells: (1) NK cells (Asialo GM1+) and (2) CD8+ CTL. Despite high titers of IFN-gamma in the SN of co-culture of SJL spleen and gamma-RCS cells, cytotoxicity only developed if IL-12 was also included in the co-cultures. The results of RNAse protection assays and multi-parameter FACS analysis demonstrated an upregulation of IFN-gamma and decrease in IL-4 by activated Th cells in co-cultures with IL-12. These results indicate that inclusion of IL-12 in primary co-cultures of SJL spleen and gamma-RCS cells influences the qualitative nature of the response to favor use of RCS-responsive Th1 rather than Th2 cells to facilitate the production of cytotoxic effector cells. Results of in vivo experiments support this hypothesis, as judged by tumor growth assays and FACS analysis of the tumor cell content of lymphoid tissues. Inhibition of lymphoma growth was observed in mice given gamma-RCS/IL-12-induced effector cells prior to injection of viable RCS cells. These results demonstrate that IL-12 can be used to alter the host immune response leading to induction of cytotoxic effector cells that inhibit the development and/or progressive growth of otherwise resistant B cell lymphomas in SJL/J mice.


Assuntos
Interleucina-12/imunologia , Linfoma de Células B/terapia , Animais , Imunoterapia Adotiva/métodos , Interleucina-12/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Teste de Cultura Mista de Linfócitos , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/terapia , Camundongos , Camundongos Endogâmicos , Transplante de Neoplasias , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Transplante Isogênico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA