Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pain ; 164(12): 2684-2695, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37278638

RESUMO

ABSTRACT: Pain associated with bone cancer remains poorly managed, and chemotherapeutic drugs used to treat cancer usually increase pain. The discovery of dual-acting drugs that reduce cancer and produce analgesia is an optimal approach. The mechanisms underlying bone cancer pain involve interactions between cancer cells and nociceptive neurons. We demonstrated that fibrosarcoma cells express high levels of autotaxin (ATX), the enzyme synthetizing lysophosphatidic acid (LPA). Lysophosphatidic acid increased proliferation of fibrosarcoma cells in vitro. Lysophosphatidic acid is also a pain-signaling molecule, which activates LPA receptors (LPARs) located on nociceptive neurons and satellite cells in dorsal root ganglia. We therefore investigated the contribution of the ATX-LPA-LPAR signaling to pain in a mouse model of bone cancer pain in which fibrosarcoma cells are implanted into and around the calcaneus bone, resulting in tumor growth and hypersensitivity. LPA was elevated in serum of tumor-bearing mice, and blockade of ATX or LPAR reduced tumor-evoked hypersensitivity. Because cancer cell-secreted exosomes contribute to hypersensitivity and ATX is bound to exosomes, we determined the role of exosome-associated ATX-LPA-LPAR signaling in hypersensitivity produced by cancer exosomes. Intraplantar injection of cancer exosomes into naive mice produced hypersensitivity by sensitizing C-fiber nociceptors. Inhibition of ATX or blockade of LPAR attenuated cancer exosome-evoked hypersensitivity in an ATX-LPA-LPAR-dependent manner. Parallel in vitro studies revealed the involvement of ATX-LPA-LPAR signaling in direct sensitization of dorsal root ganglion neurons by cancer exosomes. Thus, our study identified a cancer exosome-mediated pathway, which may represent a therapeutic target for treating tumor growth and pain in patients with bone cancer.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Exossomos , Fibrossarcoma , Humanos , Animais , Camundongos , Dor do Câncer/etiologia , Lisofosfolipídeos/metabolismo , Neoplasias Ósseas/complicações , Dor/tratamento farmacológico , Dor/etiologia
2.
Neurosci Lett ; 753: 135845, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33774149

RESUMO

Although millions of people are diagnosed with cancer each year, survival has never been greater thanks to early diagnosis and treatments. Powerful chemotherapeutic agents are highly toxic to cancer cells, but because they typically do not target cancer cells selectively, they are often toxic to other cells and produce a variety of side effects. In particular, many common chemotherapies damage the peripheral nervous system and produce neuropathy that includes a progressive degeneration of peripheral nerve fibers. Chemotherapy-induced peripheral neuropathy (CIPN) can affect all nerve fibers, but sensory neuropathies are the most common, initially affecting the distal extremities. Symptoms include impaired tactile sensitivity, tingling, numbness, paraesthesia, dysesthesia, and pain. Since neuropathic pain is difficult to manage, and because degenerated nerve fibers may not grow back and regain normal function, considerable research has focused on understanding how chemotherapy causes painful CIPN so it can be prevented. Due to the fact that both therapeutic and side effects of chemotherapy are primarily associated with the accumulation of reactive oxygen species (ROS) and oxidative stress, this review focuses on the activation of endogenous antioxidant pathways, especially PPARγ, in order to prevent the development of CIPN and associated pain. The use of synthetic and natural PPARγ agonists to prevent CIPN is discussed.


Assuntos
Antineoplásicos/efeitos adversos , Neoplasias/tratamento farmacológico , Neuralgia/prevenção & controle , PPAR gama/agonistas , Animais , Modelos Animais de Doenças , Humanos , Neuralgia/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Neuroscience ; 457: 74-87, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33422618

RESUMO

Pain is a major health problem, affecting over fifty million adults in the US alone, with significant economic cost in medical care and lost productivity. Despite evidence implicating nicotinic acetylcholine receptors (nAChRs) in pathological pain, their specific contribution to pain processing in the spinal cord remains unclear given their presence in both neuronal and non-neuronal cell types. Here we investigated if loss of neuronal-specific TMEM35a (NACHO), a novel chaperone for functional expression of the homomeric α7 and assembly of the heteromeric α3, α4, and α6-containing nAChRs, modulates pain in mice. Mice with tmem35a deletion exhibited thermal hyperalgesia and mechanical allodynia. Intrathecal administration of nicotine and the α7-specific agonist, PHA543613, produced analgesic responses to noxious heat and mechanical stimuli in tmem35a KO mice, respectively, suggesting residual expression of these receptors or off-target effects. Since NACHO is expressed only in neurons, these findings indicate that neuronal α7 nAChR in the spinal cord contributes to heat nociception. To further determine the molecular basis underlying the pain phenotype, we analyzed the spinal cord transcriptome. Compared to WT control, the spinal cord of tmem35a KO mice exhibited 72 differentially-expressed genes (DEGs). These DEGs were mapped onto functional gene networks using the knowledge-based database, Ingenuity Pathway Analysis, and suggests increased neuroinflammation as a potential contributing factor for the hyperalgesia in tmem35a KO mice. Collectively, these findings implicate a heightened inflammatory response in the absence of neuronal NACHO activity. Additional studies are needed to determine the precise mechanism by which NACHO in the spinal cord modulates pain.


Assuntos
Hiperalgesia , Receptores Nicotínicos , Animais , Canais Iônicos , Camundongos , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Nicotina , Receptores Nicotínicos/genética
4.
Mol Pain ; 16: 1744806920956480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32909881

RESUMO

To develop non-opioid therapies for postoperative incisional pain, we must understand its underlying molecular mechanisms. In this study, we assessed global gene expression changes in dorsal root ganglia neurons in a model of incisional pain to identify pertinent molecular pathways. Male, Sprague-Dawley rats underwent infiltration of 1% capsaicin or vehicle into the plantar hind paw (n = 6-9/group) 30 min before plantar incision. Twenty-four hours after incision or sham (control) surgery, lumbar L4-L6 dorsal root ganglias were collected from rats pretreated with vehicle or capsaicin. RNA was isolated and sequenced by next generation sequencing. The genes were then annotated to functional networks using a knowledge-based database, Ingenuity Pathway Analysis. In rats pretreated with vehicle, plantar incision caused robust hyperalgesia, up-regulated 36 genes and downregulated 90 genes in dorsal root ganglias one day after plantar incision. Capsaicin pretreatment attenuated pain behaviors, caused localized denervation of the dermis and epidermis, and prevented the incision-induced changes in 99 of 126 genes. The pathway analyses showed altered gene networks related to increased pro-inflammatory and decreased anti-inflammatory responses in dorsal root ganglias. Insulin-like growth factor signaling was identified as one of the major gene networks involved in the development of incisional pain. Expression of insulin-like growth factor -2 and IGFBP6 in dorsal root ganglia were independently validated with quantitative real-time polymerase chain reaction. We discovered a distinct subset of dorsal root ganglia genes and three key signaling pathways that are altered 24 h after plantar incision but are unchanged when incision was made after capsaicin infiltration in the skin. Further exploration of molecular mechanisms of incisional pain may yield novel therapeutic targets.


Assuntos
Capsaicina/farmacologia , Gânglios Espinais/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Somatomedinas/metabolismo , Transcriptoma/genética , Animais , Escala de Avaliação Comportamental , Capsaicina/uso terapêutico , Biologia Computacional , Regulação para Baixo , Gânglios Espinais/lesões , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Masculino , RNA-Seq , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética , Somatomedinas/genética , Ferida Cirúrgica/complicações , Regulação para Cima
5.
Prostaglandins Other Lipid Mediat ; 151: 106479, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32745525

RESUMO

Pain produced by bone cancer is often severe and difficult to treat. Here we examined effects of Resolvin D1 (RvD1) or E1 (RvE1), antinociceptive products of ω-3 polyunsaturated fatty acids, on cancer-induced mechanical allodynia and heat hyperalgesia. Experiments were performed using a mouse model of bone cancer produced by implantation of osteolytic ficrosarcoma into and around the calcaneus bone. Mechanical allodynia and heat hyperalgesia in the tumor-bearing paw were assessed by measuring withdrawal responses to a von Frey monofilament and to radiant heat applied on the plantar hind paw. RvD1, RvE1, and cannabinoid receptor antagonists were injected intrathecally. Spinal content of endocannabinoids was evaluated using UPLC-MS/MS analysis. RvD1 and RvE1 had similar antinociceptive potencies. ED50s for RvD1 and RvE1 in reducing mechanical allodynia were 0.2 pg (0.53 fmol) and 0.6 pg (1.71 fmol), respectively, and were 0.3 pg (0.8 fmol) and 0.2 pg (0.57 fmol) for reducing heat hyperalgesia. Comparisons of dose-response relationships showed equal efficacy for reducing mechanical allodynia, however, efficacy for reducing heat hyperalgesia was greater for of RvD1. Using UPLC-MS/MS we determined that RvD1, but not RvE1, increased levels of the endocannabinoids Anandamide and 2-Arachidonoylglycerol in the spinal cord. Importantly, Resolvins did not alter acute nociception or motor function in naïve mice. Our data indicate, that RvD1 and RvE1 produce potent antiallodynia and antihyperalgesia in a model of bone cancer pain. RvD1 also triggers spinal upregulation of endocannabinoids that produce additional antinociception predominantly through CB2 receptors.


Assuntos
Neoplasias Ósseas/complicações , Dor do Câncer/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Endocanabinoides/metabolismo , Hiperalgesia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Dor do Câncer/patologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Hiperalgesia/patologia , Masculino , Camundongos
6.
Pain Med ; 21(1): 109-117, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268147

RESUMO

OBJECTIVES: Intrathecal baclofen (ITB) pumps used to manage spasticity in children with cerebral palsy (CP) also improve pain outcomes for some but not all patients. The purpose of this clinical feasibility study was to explore whether a quantitative sensory testing approach could a) be modified and used to subgroup individuals into sensory profiles and b) test whether the profiles were related to postimplant pain outcomes (i.e., pain responsive or pain persistent). SUBJECTS: A purposeful clinical sample of nine children with CP (mean age = 12.5 years, male = 56%) and complex communication needs participated. METHODS: A prospective within-subject design was used to measure proxy-reported pain before and after ITB implant. Pain response status was determined by proxy-reported pain intensity change (>50% change in maximum rated intensity). A modified quantitative sensory testing (mQST) procedure was used to assess behavioral responsivity to an array of calibrated sensory (tactile/acute nociceptive) stimuli before surgery. RESULTS: Seven individuals with presurgical pain had mQST differentiated sensory profiles in relation to ITB pain outcomes and relative to the two individuals with no pain. Presurgically, the ITB pain responsive subgroup (N = 3, maximum rated pain intensity decreased >50% after ITB implant) showed increased behavioral reactivity to an acute nociceptive stimulus and cold stimulus, whereas the ITB pain persistent subgroup (N = 4) showed reduced behavioral reactivity to cold and repeated von Frey stimulation relative to the no pain individuals. CONCLUSION: Implications for patient selection criteria and stratification to presurgically identify individuals with CP "at risk" for persistent postprocedure pain are discussed.


Assuntos
Baclofeno/administração & dosagem , Paralisia Cerebral/tratamento farmacológico , Relaxantes Musculares Centrais/administração & dosagem , Dor/diagnóstico , Estimulação Física , Adolescente , Adulto , Paralisia Cerebral/complicações , Criança , Estudos de Viabilidade , Feminino , Humanos , Bombas de Infusão Implantáveis , Injeções Espinhais , Masculino , Espasticidade Muscular/tratamento farmacológico , Espasticidade Muscular/etiologia , Dor/etiologia , Estimulação Física/instrumentação , Estimulação Física/métodos , Sensação/efeitos dos fármacos , Adulto Jovem
7.
Neuropharmacology ; 160: 107690, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271770

RESUMO

Pain is among the most common symptoms in cancer and approximately 90% of patients experience end-stage cancer pain. The management of cancer pain is challenging due to the significant side effects associated with opioids, and novel therapeutic approaches are needed. MMG22 is a bivalent ligand containing MOR agonist and mGluR5 antagonist pharmacophores joined by a 22-atom spacer. MMG22 exhibited extraordinary analgesia following intrathecal administration in a mouse model of bone cancer pain. Here, we assessed the effectiveness of systemic administration of MMG22 in reducing cancer pain and evaluated whether MMG22 displays side effects associated with opioids. Fibrosarcoma cells were injected into and around the calcaneus bone in C3H mice. Mechanical hyperalgesia was defined as an increase in the paw withdrawal frequencies (PWFs) evoked by application of a von Frey monofilament (3.9 mN bending force) applied to the plantar surface of the hind paw Subcutaneous (s.c.), intramuscular (i.m.), and oral (p.o.) administration of MMG22 produced robust dose-dependent antihyperalgesia, whose ED50 was orders of magnitude lower than morphine. Moreover, the ED50 for MMG22 decreased with disease progression. Importantly, s.c. administration of MMG22 did not produce acute (24 h) or long-term (9 days) tolerance, was not rewarding (conditioned place preference test), and did not produce naloxone-induced precipitated withdrawal or alter motor function. A possible mechanism of action of MMG22 is discussed in terms of inhibition of spinal NMDAR via antagonism of its co-receptor, mGluR5, and concomitant activation of neuronal MOR. We suggest that MMG22 may be a powerful alternative to traditional opioids for managing cancer pain. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.


Assuntos
Dor do Câncer/tratamento farmacológico , Dor do Câncer/metabolismo , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores Opioides mu/agonistas , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/metabolismo , Hiperalgesia/tratamento farmacológico , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C3H , Morfina/uso terapêutico , Receptores de Ácido Caínico/administração & dosagem , Receptores Opioides mu/administração & dosagem
8.
Neuropharmacology ; 158: 107598, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30970233

RESUMO

Cisplatin and other widely employed platinum-based anticancer agents produce chemotherapy-induced peripheral neuropathy (CIPN) that often results in pain and hyperalgesia that are difficult to manage. We investigated the efficacy of a novel bivalent ligand, MCC22, for the treatment of pain arising from CIPN. MCC22 consists of mu opioid receptor (MOR) agonist and chemokine receptor 5 (CCR5) antagonist pharmacophores connected through a 22-atom spacer and was designed to target a putative MOR-CCR5 heteromer localized in pain processing areas. Mice received once daily intraperitoneal (i.p.) injections of cisplatin (1 mg/kg) for seven days and behavior testing began 7 days later. Cisplatin produced mechanical hyperalgesia that was decreased dose-dependently by MCC22 given by intrathecal (ED50 = 0.004 pmol) or i.p. (3.07 mg/kg) routes. The decrease in hyperalgesia was associated with decreased inflammatory response by microglia in the spinal cord. Unlike morphine, MCC22 given daily for nine days did not exhibit tolerance to its analgesic effect and its characteristic antihyperalgesic activity was fully retained in morphine-tolerant mice. Furthermore, MCC22 did not alter motor function and did not exhibit rewarding properties. Given the exceptional potency of MCC22 without tolerance or reward, MCC22 has the potential to vastly improve management of chronic pain due to CIPN. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.


Assuntos
Analgésicos Opioides/farmacologia , Antineoplásicos/toxicidade , Antagonistas dos Receptores CCR5/farmacologia , Cisplatino/toxicidade , Hiperalgesia/induzido quimicamente , Isoquinolinas/farmacologia , Neuralgia/induzido quimicamente , Nociceptividade/efeitos dos fármacos , Piperidinas/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Receptores Opioides mu/agonistas
9.
Pain ; 160(3): 688-701, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30507781

RESUMO

Painful peripheral neuropathy is a dose-limiting side effect of cisplatin treatment. Using a murine model of cisplatin-induced hyperalgesia, we determined whether a PPARγ synthetic agonist, pioglitazone, attenuated the development of neuropathic pain and identified underlying mechanisms. Cisplatin produced mechanical and cold hyperalgesia and decreased electrical thresholds of Aδ and C fibers, which were attenuated by coadministration of pioglitazone (10 mg/kg, intraperitoneally [i.p.]) with cisplatin. Antihyperalgesic effects of pioglitazone were blocked by the PPARγ antagonist T0070907 (10 mg/kg, i.p.). We hypothesized that the ability of pioglitazone to reduce the accumulation of reactive oxygen species (ROS) in dorsal root ganglion (DRG) neurons contributed to its antihyperalgesic activity. Effects of cisplatin and pioglitazone on somatosensory neurons were studied on dissociated mouse DRG neurons after 24 hours in vitro. Incubation of DRG neurons with cisplatin (13 µM) for 24 hours increased the occurrence of depolarization-evoked calcium transients, and these were normalized by coincubation with pioglitazone (10 µM). Oxidative stress in DRG neurons was considered a significant contributor to cisplatin-evoked hyperalgesia because a ROS scavenger attenuated hyperalgesia and normalized the evoked calcium responses when cotreated with cisplatin. Pioglitazone increased the expression and activity of ROS-reducing enzymes in DRG and normalized cisplatin-evoked changes in oxidative stress and labeling of mitochondria with the dye MitoTracker Deep Red, indicating that the antihyperalgesic effects of pioglitazone were attributed to its antioxidant properties in DRG neurons. These data demonstrate clear benefits of broadening the use of the antidiabetic drug pioglitazone, or other PPARγ agonists, to minimize the development of cisplatin-induced painful neuropathy.


Assuntos
Hipoglicemiantes/uso terapêutico , Neuralgia/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Pioglitazona/uso terapêutico , Animais , Antineoplásicos/toxicidade , Células Cultivadas , Cisplatino/toxicidade , Modelos Animais de Doenças , Feminino , Gânglios Espinais/citologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Neuralgia/induzido quimicamente , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Limiar da Dor/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
10.
J Neurophysiol ; 118(5): 2727-2744, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794197

RESUMO

Neurons in the rostral ventromedial medulla (RVM) project to the spinal cord and are involved in descending modulation of pain. Several studies have shown that activation of neurokinin-1 (NK-1) receptors in the RVM produces hyperalgesia, although the underlying mechanisms are not clear. In parallel studies, we compared behavioral measures of hyperalgesia to electrophysiological responses of nociceptive dorsal horn neurons produced by activation of NK-1 receptors in the RVM. Injection of the selective NK-1 receptor agonist Sar9,Met(O2)11-substance P (SSP) into the RVM produced dose-dependent mechanical and heat hyperalgesia that was blocked by coadministration of the selective NK-1 receptor antagonist L-733,060. In electrophysiological studies, responses evoked by mechanical and heat stimuli were obtained from identified high-threshold (HT) and wide dynamic range (WDR) neurons. Injection of SSP into the RVM enhanced responses of WDR neurons, including identified neurons that project to the parabrachial area, to mechanical and heat stimuli. Since intraplantar injection of capsaicin produces robust hyperalgesia and sensitization of nociceptive spinal neurons, we examined whether this sensitization was dependent on NK-1 receptors in the RVM. Pretreatment with L-733,060 into the RVM blocked the sensitization of dorsal horn neurons produced by capsaicin. c-Fos labeling was used to determine the spatial distribution of dorsal horn neurons that were sensitized by NK-1 receptor activation in the RVM. Consistent with our electrophysiological results, administration of SSP into the RVM increased pinch-evoked c-Fos expression in the dorsal horn. It is suggested that targeting this descending pathway may be effective in reducing persistent pain.NEW & NOTEWORTHY It is known that activation of neurokinin-1 (NK-1) receptors in the rostral ventromedial medulla (RVM), a main output area for descending modulation of pain, produces hyperalgesia. Here we show that activation of NK-1 receptors produces hyperalgesia by sensitizing nociceptive dorsal horn neurons. Targeting this pathway at its origin or in the spinal cord may be an effective approach for pain management.


Assuntos
Hiperalgesia/metabolismo , Bulbo/metabolismo , Células do Corno Posterior/metabolismo , Receptores da Neurocinina-1/metabolismo , Animais , Capsaicina , Cateteres de Demora , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Sensibilização do Sistema Nervoso Central/fisiologia , Temperatura Alta , Hiperalgesia/patologia , Imuno-Histoquímica , Masculino , Bulbo/efeitos dos fármacos , Bulbo/patologia , Microeletrodos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Piperidinas/farmacologia , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Receptores da Neurocinina-1/agonistas , Tato
11.
Pain ; 158(7): 1332-1341, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28622274

RESUMO

Thoracotomy results in chronic postoperative pain (CPTP) in half of the cases. Earlier findings in rat models of persistent post-surgical pain suggest that spinal pathways are critical for pain onset but not its maintenance. Descending systems from the brain stem modulate nociceptive transmission in the spinal cord and contribute to persistent pain, but their role in chronic postoperative pain has not been studied. Here, we ablated pronociceptive neurokinin-1 receptor (NK-1R)-expressing neurons in the rat rostral ventromedial medulla (RVM) to identify their role in CPTP. Cells were ablated by microinjection of the neurotoxin Sar, Met(O2)-Substance P (SSP-SAP), either 2 to 3 weeks before ("Prevention" condition) or 10 days after ("Reversal" condition) thoracotomy with rib retraction. Inactive Blank-SAP was the control. Tactile hypersensitivity was defined by lowered force thresholds for nocifensive responses to von Frey filaments applied over the dorsal trunk, and pain-like behavior assessed by the Qualitative Hyperalgesia Profile; both were followed for 5 weeks after surgery. SSP-SAP injection before surgery resulted in ∼95% loss of NK-1R neurons in RVM and prevented postoperative mechano-hypersensitivity. Blank-SAP was ineffective. SSP-SAP given at postoperative day 10 was equally effective in ablating NK-1R neurons but fully reversed mechano-hypersensitivity in only 3 of 9 hypersensitive rats. Fewer rats showed intense pain-like behavior, by Qualitative Hyperalgesia Profile analysis, in the Prevention than in the Control conditions, and the more intense pain behaviors declined along with SSP-SAP-induced Reversal of hypersensitivity. Neurokinin-1 receptor-expressing neurons in RVM appear essential for the development but contribute only partially to the maintenance of CPTP.


Assuntos
Dor Crônica/metabolismo , Hiperalgesia/metabolismo , Bulbo/metabolismo , Neurônios/metabolismo , Dor Pós-Operatória/metabolismo , Receptores da Neurocinina-1/metabolismo , Toracotomia/efeitos adversos , Animais , Dor Crônica/etiologia , Masculino , Limiar da Dor/fisiologia , Dor Pós-Operatória/etiologia , Ratos , Ratos Sprague-Dawley
12.
J Neurophysiol ; 113(1): 14-22, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25185804

RESUMO

The rostral ventromedial medulla (RVM) projects to the medullary and spinal dorsal horns and is a major source of descending modulation of nociceptive transmission. Traditionally, neurons in the RVM are classified functionally as on, off, and neutral cells on the basis of responses to noxious cutaneous stimulation of the tail or hind paw. On cells facilitate nociceptive transmission, off cells are inhibitory, whereas neutral cells are unresponsive to noxious stimuli and their role in pain modulation is unclear. Classification of RVM neurons with respect to stimulation of craniofacial tissues is not well defined. In isoflurane-anesthetized male rats, RVM neurons first were classified as on (25.5%), off (25.5%), or neutral (49%) cells by noxious pinch applied to the hind paw. Pinching the skin overlying the temporomandibular joint (TMJ) altered the proportions of on (39.2%), off (42.2%), and neutral (19.6%) cells. To assess the response of RVM cells to specialized craniofacial inputs, adenosine triphosphate (ATP; 0.01-1 mM) was injected into the TMJ and capsaicin (0.1%) was applied to the ocular surface. TMJ and ocular surface stimulation also resulted in a reduced proportion of neutral cells compared with hind paw pinch. Dose-effect analyses revealed that on and off cells encoded the intra-TMJ concentration of ATP. These results suggest that somatotopy plays a significant role in the functional classification of RVM cells and support the notion that neutral cells likely are subgroups of on and off cells. It is suggested that a portion of RVM neurons serve different functions in modulating craniofacial and spinal pain conditions.


Assuntos
Dor Facial/fisiopatologia , Bulbo/fisiopatologia , Neurônios/fisiologia , Dor Nociceptiva/fisiopatologia , Pele/fisiopatologia , Potenciais de Ação , Trifosfato de Adenosina , Animais , Capsaicina , Olho/fisiopatologia , Membro Anterior/fisiopatologia , Membro Posterior/fisiopatologia , Masculino , Microeletrodos , Estimulação Física , Ratos Sprague-Dawley , Articulação Temporomandibular/fisiopatologia
13.
J Neurophysiol ; 113(5): 1501-10, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25505113

RESUMO

Painful neuropathy frequently develops as a consequence of commonly used chemotherapy agents for cancer treatment and is often a dose-limiting side effect. Currently available analgesic treatments are often ineffective on pain induced by neurotoxicity. Although peripheral administration of cannabinoids, endocannabinoids, and inhibitors of endocannabinoid hydrolysis has been effective in reducing hyperalgesia in models of peripheral neuropathy, including chemotherapy-induced peripheral neuropathy (CIPN), few studies have examined cannabinoid effects on responses of nociceptors in vivo. In this study we determined whether inhibition of fatty acid amide hydrolase (FAAH), which slows the breakdown of the endocannabinoid anandamide (AEA), reduced sensitization of nociceptors produced by chemotherapy. Over the course of a week of daily treatments, mice treated with the platinum-based chemotherapy agent cisplatin developed robust mechanical allodynia that coincided with sensitization of cutaneous C-fiber nociceptors as indicated by the development of spontaneous activity and increased responses to mechanical stimulation. Administration of the FAAH inhibitor URB597 into the receptive field of sensitized C-fiber nociceptors decreased spontaneous activity, increased mechanical response thresholds, and decreased evoked responses to mechanical stimuli. Cotreatment with CB1 (AM281) or CB2 (AM630) receptor antagonists showed that the effect of URB597 was mediated primarily by CB1 receptors. These changes following URB597 were associated with an increase in the endocannabinoid anandamide in the skin. Our results suggest that enhanced signaling in the peripheral endocannabinoid system could be utilized to reduce nociceptor sensitization and pain associated with CIPN.


Assuntos
Amidoidrolases/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Nociceptividade , Nociceptores/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Amidoidrolases/metabolismo , Animais , Benzamidas/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Carbamatos/farmacologia , Cisplatino/efeitos adversos , Hidrólise , Indóis/farmacologia , Masculino , Camundongos , Morfolinas/farmacologia , Fibras Nervosas Amielínicas/metabolismo , Fibras Nervosas Amielínicas/fisiologia , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Doenças do Sistema Nervoso Periférico/etiologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Pirazóis/farmacologia , Pele/lesões
14.
Cancer Res ; 74(21): 5955-62, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25183707

RESUMO

Peripheral neuropathy caused by cytotoxic chemotherapy, especially platins and taxanes, is a widespread problem among cancer survivors that is likely to continue to expand in the future. However, little work to date has focused on understanding this challenge. The goal in this study was to determine the impact of colorectal cancer and cumulative chemotherapeutic dose on sensory function to gain mechanistic insight into the subtypes of primary afferent fibers damaged by chemotherapy. Patients with colorectal cancer underwent quantitative sensory testing before and then prior to each cycle of oxaliplatin. These data were compared with those from 47 age- and sex-matched healthy volunteers. Patients showed significant subclinical deficits in sensory function before any therapy compared with healthy volunteers, and they became more pronounced in patients who received chemotherapy. Sensory modalities that involved large Aß myelinated fibers and unmyelinated C fibers were most affected by chemotherapy, whereas sensory modalities conveyed by thinly myelinated Aδ fibers were less sensitive to chemotherapy. Patients with baseline sensory deficits went on to develop more symptom complaints during chemotherapy than those who had no baseline deficit. Patients who were tested again 6 to 12 months after chemotherapy presented with the most numbness and pain and also the most pronounced sensory deficits. Our results illuminate a mechanistic connection between the pattern of effects on sensory function and the nerve fiber types that appear to be most vulnerable to chemotherapy-induced toxicity, with implications for how to focus future work to ameloirate risks of peripheral neuropathy.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Compostos Organoplatínicos/efeitos adversos , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/patologia , Neoplasias Colorretais/complicações , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina , Dor/complicações , Dor/tratamento farmacológico , Dor/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Sobreviventes
15.
J Clin Oncol ; 32(28): 3156-62, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25154818

RESUMO

PURPOSE: The goal in this study was to determine the incidence of subclinical neuropathy in treatment-naive patients with multiple myeloma (MM) with no history of peripheral neuropathy using quantitative sensory tests (QSTs) and its correlation with innervation density of the extremities using noninvasive laser reflectance confocal microscopy. PATIENTS AND METHODS: QST results were collected for 27 patients with a diagnosis of MM and compared with data collected from 30 age- and sex-matched healthy volunteers. Skin temperature, sensorimotor function (grooved pegboard test), and detection thresholds for temperature, sharpness, and low-threshold mechanical stimuli (von Frey monofilaments and bumps detection test) were measured. Meissner's corpuscle (MC) density in the fingertips was assessed using in vivo laser reflectance confocal microscopy. RESULTS: Patients showed a high incidence (> 80%) of ≥ one subclinical QST deficit. These included increased von Frey, bumps, and warmth detection thresholds as compared with healthy volunteers. Patients also showed increases in cold pain, sensorimotor deficits (grooved pegboard test), and higher overall neuropathy scores. MC density was significantly lower in patients than controls and showed significant inverse correlation with bumps detection threshold. CONCLUSION: Patients with MM commonly present with sensory and sensorimotor deficits before undergoing treatment, and these deficits seem to result from disease-related decreases in peripheral innervation density.


Assuntos
Dedos/inervação , Mieloma Múltiplo/complicações , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/fisiopatologia , Idoso , Estudos de Casos e Controles , Temperatura Baixa , Feminino , Temperatura Alta , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Exame Neurológico/métodos , Doenças do Sistema Nervoso Periférico/etiologia , Córtex Sensório-Motor/fisiopatologia , Limiar Sensorial , Temperatura Cutânea
16.
Blood ; 122(11): 1853-62, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23775718

RESUMO

Sickle cell anemia (SCA) is an inherited disorder associated with severe lifelong pain and significant morbidity. The mechanisms of pain in SCA remain poorly understood. We show that mast cell activation/degranulation contributes to sickle pain pathophysiology by promoting neurogenic inflammation and nociceptor activation via the release of substance P in the skin and dorsal root ganglion. Mast cell inhibition with imatinib ameliorated cytokine release from skin biopsies and led to a correlative decrease in granulocyte-macrophage colony-stimulating factor and white blood cells in transgenic sickle mice. Targeting mast cells by genetic mutation or pharmacologic inhibition with imatinib ameliorates tonic hyperalgesia and prevents hypoxia/reoxygenation-induced hyperalgesia in sickle mice. Pretreatment with the mast cell stabilizer cromolyn sodium improved analgesia following low doses of morphine that were otherwise ineffective. Mast cell activation therefore underlies sickle pathophysiology leading to inflammation, vascular dysfunction, pain, and requirement for high doses of morphine. Pharmacological targeting of mast cells with imatinib may be a suitable approach to address pain and perhaps treat SCA.


Assuntos
Anemia Falciforme/fisiopatologia , Mastócitos/fisiologia , Dor/fisiopatologia , Anemia Falciforme/sangue , Anemia Falciforme/genética , Animais , Benzamidas/farmacologia , Células Cultivadas , Citocinas/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Gânglios Espinais/fisiopatologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Hipóxia/fisiopatologia , Mesilato de Imatinib , Contagem de Leucócitos , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Inflamação Neurogênica/genética , Inflamação Neurogênica/fisiopatologia , Inflamação Neurogênica/prevenção & controle , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Nociceptores/fisiologia , Dor/genética , Dor/prevenção & controle , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pele/metabolismo , Pele/patologia , Pele/fisiopatologia , Substância P/metabolismo
17.
J Neurosci ; 32(20): 7091-101, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22593077

RESUMO

Painful peripheral neuropathy is a dose-limiting complication of chemotherapy. Cisplatin produces a cumulative toxic effect on peripheral nerves, and 30-40% of cancer patients receiving this agent experience pain. By modeling cisplatin-induced hyperalgesia in mice with daily injections of cisplatin (1 mg/kg, i.p.) for 7 d, we investigated the anti-hyperalgesic effects of anandamide (AEA) and cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597), an inhibitor of AEA hydrolysis. Cisplatin-induced mechanical and heat hyperalgesia were accompanied by a decrease in the level of AEA in plantar paw skin. No changes in motor activity were observed after seven injections of cisplatin. Intraplantar injection of AEA (10 µg/10 µl) or URB597 (9 µg/10 µl) transiently attenuated hyperalgesia through activation of peripheral CB1 receptors. Co-injections of URB597 (0.3 mg/kg daily, i.p.) with cisplatin decreased and delayed the development of mechanical and heat hyperalgesia. The effect of URB597 was mediated by CB1 receptors since AM281 (0.33 mg/kg daily, i.p.) blocked the effect of URB597. Co-injection of URB597 also normalized the cisplatin-induced decrease in conduction velocity of Aα/Aß-fibers and reduced the increase of ATF-3 and TRPV1 immunoreactivity in dorsal root ganglion (DRG) neurons. Since DRGs are a primary site of toxicity by cisplatin, effects of cisplatin were studied on cultured DRG neurons. Incubation of DRG neurons with cisplatin (4 µg/ml) for 24 h decreased the total length of neurites. URB597 (100 nM) attenuated these changes through activation of CB1 receptors. Collectively, these results suggest that pharmacological facilitation of AEA signaling is a promising strategy for attenuating cisplatin-associated sensory neuropathy.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Benzamidas/uso terapêutico , Carbamatos/uso terapêutico , Cisplatino/antagonistas & inibidores , Hiperalgesia/tratamento farmacológico , Síndromes Neurotóxicas/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Alcamidas Poli-Insaturadas/uso terapêutico , Receptor CB1 de Canabinoide/agonistas , Fator 3 Ativador da Transcrição/metabolismo , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/antagonistas & inibidores , Ácidos Araquidônicos/farmacocinética , Ácidos Araquidônicos/farmacologia , Benzamidas/antagonistas & inibidores , Benzamidas/farmacologia , Moduladores de Receptores de Canabinoides/farmacocinética , Moduladores de Receptores de Canabinoides/farmacologia , Moduladores de Receptores de Canabinoides/uso terapêutico , Carbamatos/antagonistas & inibidores , Carbamatos/farmacologia , Células Cultivadas , Cisplatino/efeitos adversos , Modelos Animais de Doenças , Interações Medicamentosas , Endocanabinoides , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C3H , Morfolinas/farmacologia , Atividade Motora/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Alcamidas Poli-Insaturadas/farmacocinética , Alcamidas Poli-Insaturadas/farmacologia , Pirazóis/farmacologia , Canais de Cátion TRPV/metabolismo
18.
Clin Cancer Res ; 18(11): 3180-7, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22496202

RESUMO

PURPOSE: Of the numerous complications associated with cancer and cancer treatment, peripheral neuropathy is a deleterious and persistent patient complaint commonly attributed to chemotherapy. The present study investigated the occurrence of subclinical peripheral neuropathy in patients with colorectal cancer before the initiation of chemotherapy. EXPERIMENTAL DESIGN: Fifty-two patients underwent extensive quantitative sensory testing (QST) before receiving chemotherapy. Changes in multiple functions of primary afferent fibers were assessed and compared with a group of healthy control subjects. Skin temperature, sensorimotor function, sharpness detection, and thermal detection were measured, as was touch detection, using both conventional (von Frey monofilaments) and novel (Bumps detection test) methodology. RESULTS: Patients had subclinical deficits, especially in sensorimotor function, detection of thermal stimuli, and touch detection that were present before the initiation of chemotherapy. The measured impairment in touch sensation was especially pronounced when using the Bumps detection test. CONCLUSIONS: The patients with colorectal cancer in this study exhibited deficits in sensory function before undergoing chemotherapy treatment, implicating the disease itself as a contributing factor in chemotherapy-induced peripheral neuropathy. The widespread nature of the observed deficits further indicated that cancer is affecting multiple primary afferent subtypes. Specific to the finding of impaired touch sensation, results from this study highlight the use of newly used methodology, the Bumps detection test, as a sensitive and useful tool in the early detection of peripheral neuropathy.


Assuntos
Neoplasias Colorretais/complicações , Doenças do Sistema Nervoso Periférico/etiologia , Feminino , Humanos , Masculino , Medição da Dor/métodos , Doenças do Sistema Nervoso Periférico/diagnóstico , Sensação , Temperatura Cutânea
20.
Behav Pharmacol ; 22(5-6): 607-16, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21610490

RESUMO

In light of the adverse side-effects of opioids, cannabinoid receptor agonists may provide an effective alternative for the treatment of cancer pain. This study examined the potency and efficacy of synthetic CB1 and CB2 receptor agonists in a murine model of tumor pain. Intraplantar injection of the CB1 receptor agonist arachidonylcyclopropylamide (ED(50) of 18.4 µg) reduced tumor-related mechanical hyperalgesia by activation of peripheral CB1 but not CB2 receptors. Similar injection of the CB2 receptor agonist AM1241 (ED50 of 19.5 µg) reduced mechanical hyperalgesia by activation of peripheral CB2 but not CB1 receptors. Both agonists had an efficacy comparable with that of morphine (intraplantar), but their analgesic effects were independent of opioid receptors. Isobolographic analysis of the coinjection of arachidonylcyclopropylamide and AM1241 determined that the CB1 and CB2 receptor agonists interacted synergistically to reduce mechanical hyperalgesia in the tumor-bearing paw. These data extend our previous findings that the peripheral cannabinoid receptors are a promising target for the management of cancer pain and mixed cannabinoid receptor agonists may have a therapeutic advantage over selective agonists.


Assuntos
Neoplasias Experimentais/complicações , Dor/tratamento farmacológico , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Analgésicos/farmacologia , Animais , Ácidos Araquidônicos/farmacologia , Canabinoides/farmacologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Morfina/farmacologia , Dor/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA