Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 9(19): e15038, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34633155

RESUMO

Recently, percutaneous microbiopsy needles have been used as a less invasive alternative to the Bergstrom needle for obtaining human skeletal muscle biopsy to assess changes in protein content, gene expression, and enzymatic activities. Unlike the Bergstrom muscle biopsy procedure, potential complications associated with microbiopsies of human skeletal muscle have not been documented. Therefore, the present case report follows a young male's recovery from a muscle biopsy-induced hemorrhage/hematoma of the right vastus lateralis with the specific aims of (1) informing future participants, researchers, and clinicians on expected time course of recovery and (2) informing methods to minimize future participant adverse event risk during and after the percutaneous microbiopsy procedure. The present case report demonstrates that the inadvertent hemorrhaging of a neighboring vessel by percutaneous microbiopsy procedure can be debilitating. To minimize the risk of muscle biopsy-induced hemorrhage/hematoma, we advise post-biopsy compression for up to 15 min and post-biopsy follow-up should be completed for up to 72 h. When there is indication of hematoma development, compression should be applied, and the participant should avoid exercise and physical activity.


Assuntos
Biópsia/efeitos adversos , Hematoma/etiologia , Doenças Musculares/etiologia , Músculo Quadríceps/patologia , Hematoma/diagnóstico por imagem , Humanos , Masculino , Doenças Musculares/diagnóstico por imagem , Músculo Quadríceps/diagnóstico por imagem , Ultrassonografia , Adulto Jovem
2.
Int J Exerc Sci ; 13(2): 554-566, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509113

RESUMO

Exercise-induced alterations in adipose tissue insulin and/or ß-adrenergic signaling may contribute to increases in whole-body fat oxidation following acute exercise. Thus, we examined changes in insulin (Akt, AS160) and ß-adrenergic (PKA) signaling proteins in subcutaneous adipose tissue and whole-body fat oxidation in overweight women following acute high-intensity interval exercise (HIIE). Overweight females completed two experimental sessions in a randomized order: 1) control (bed rest) and 2) HIIE (10 × 4 min running intervals at 90% HRmax, 2-min recovery). Subcutaneous abdominal adipose tissue biopsies were obtained from 10 participants before (pre-), immediately (0hr) after (post-), 2hr post-, and 4hr post-exercise. Plasma glucose and insulin levels were assessed in venous blood samples obtained at each biopsy time-point from a different group of 5 participants (BMI-matched to biopsy group). Fat oxidation rates were estimated using the respiratory exchange ratio (RER) in all participants using indirect calorimetry pre-, 2hr post-, and 4hr post-exercise. RER was decreased (p < 0.05) at 2hr post-exercise after HIIE (0.77 ± 0.04) compared to control (0.84 ± 0.04). Despite higher plasma glucose (p < 0.01) and insulin (p < 0.05) levels at 0hr post-exercise versus control, no significant interaction effects were observed for Akt or AS160 phosphorylation (p > 0.05). Phosphorylation of PKA substrates was unaltered in both conditions (p > 0.05). Collectively, altered ß-adrenergic and insulin signaling in subcutaneous adnominal adipose tissue does not appear to explain increased whole-body fat oxidation following acute HIIE.

3.
Pflugers Arch ; 472(3): 375-384, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32065259

RESUMO

Leucine-rich pentatricopeptide repeat motif-containing protein (LRP130) is implicated in the control of mitochondrial gene expression and oxidative phosphorylation in the liver, partly due to its interaction with peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α). To investigate LRP130's role in healthy human skeletal muscle, we examined LRP130's fiber-type distribution and subcellular localization (n = 6), as well as LRP130's relationship with PGC-1α protein and citrate synthase (CS) maximal activity (n = 33) in vastus lateralis samples obtained from young males. The impact of an acute bout of exercise (endurance [END] and sprint interval training [SIT]) and fasting (8 h) on LRP130 and PGC-1α expression was also determined (n = 10). LRP130 protein content paralleled fiber-specific succinate dehydrogenase activity (I > IIA) and strongly correlated with the mitochondrially localized protein apoptosis-inducing factor in type I (r = 0.75) and type IIA (r = 0.85) fibers. Whole-muscle LRP130 protein content was positively related to PGC-1α protein (r = 0.49, p < 0.01) and CS maximal activity (r = 0.42, p < 0.01). LRP130 mRNA expression was unaltered (p > 0.05) following exercise, despite ~ 6.6- and ~ 3.8-fold increases (p < 0.01) in PGC-1α mRNA expression after END and SIT, respectively. Although unchanged at the group level (p > 0.05), moderate-to-strong positive correlations were apparent between individual changes in LRP130 and PGC-1α expression at the mRNA (r = 0.63, p < 0.05) and protein (r = 0.59, p = 0.07) level in response to fasting. Our findings support a potential role for LRP130 in the maintenance of basal mitochondrial phenotype in human skeletal muscle. LRP130's importance for mitochondrial remodeling in exercised and fasted human skeletal muscle requires further investigation.


Assuntos
Exercício Físico/fisiologia , Jejum/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Neoplasias/metabolismo , Descanso/fisiologia , Adulto , Animais , Apoptose/fisiologia , Citrato (si)-Sintase/metabolismo , Jejum/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Musculares/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/metabolismo , Adulto Jovem
4.
Curr Res Physiol ; 3: 1-10, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34746815

RESUMO

This study tested the hypotheses that 1) skeletal muscle biopsies performed with the Bergström needle evoke larger perceptions of pain and greater hemodynamic reactivity compared to biopsies performed with the microbiopsy needle, and 2) both needles yield samples with similar fibre type compositions when samples are collected at similar skeletal muscle depths. Fourteen healthy (age: 21.6 ±â€¯3.2 years; VO2peak: 41.5 ±â€¯5.8 mL/kg/min) males (n = 7) and females (n = 7) provided two resting skeletal muscle biopsies, one with each needle type, following a randomized crossover design. Participants completed the short-form McGill Pain Questionnaire and the Brief Pain Inventory before, during, and after the skeletal muscle biopsies. Hemodynamic reactivity was assessed by measuring heart rate (HR) and mean arterial pressure (MAP) at rest and during the biopsy procedures. Immunofluorescence analysis was used to assess fibre type composition in vastus lateralis samples. Compared to the microbiopsy needle, the Bergström needle elicited a larger perception of pain but similar hemodynamic reactivity during the biopsy. Both needles yielded skeletal muscle samples with similar fibre type composition and resulted in similar perceptions of pain and pain-related interference during the post-biopsy recovery period. Collectively, these findings suggest that studies should consider using the microbiopsy needle rather than the Bergström needle unless large amounts of muscle tissue or certain muscle fibre lengths are required. However, future work should determine whether our findings are generalizable to biopsies performed with different procedures and/or types of Bergström/microbiopsy needles.

5.
Exp Physiol ; 104(3): 407-420, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30657617

RESUMO

NEW FINDINGS: What is the central question of this study? Are individual changes in exercise-induced mRNA expression repeatable (i.e. representative of the true response to exercise rather than random error)? What is the main finding and its importance? Exercise-induced changes in mRNA expression are not repeatable even under identical experimental conditions, thereby challenging the use of mRNA expression as a biomarker of adaptive potential and/or individual responsiveness to exercise. ABSTRACT: It remains unknown if (1) the observed change in mRNA expression reflects an individual's true response to exercise or random (technical and/or biological) error, and (2) the individual responsiveness to exercise is protocol-specific. We examined the repeatability of skeletal muscle PGC-1α, PDK4, NRF-1, VEGF-A, HSP72 and p53 mRNA expression following two identical endurance exercise (END) bouts (END-1, END-2; 30 min of cycling at 65% of peak work rate (WRpeak ), n = 11) and inter-individual variability in PGC-1α and PDK4 mRNA expression following END and sprint interval training (SIT; 8 × 20 s cycling intervals at ∼170% WRpeak , n = 10) in active young males. The repeatability of key gene analysis steps (RNA extraction, reverse transcription, qPCR) and within-sample fibre-type distribution (n = 8) was also determined to examine potential sources of technical error in our analyses. Despite highly repeatable exercise bout characteristics (work rate, heart rate, blood lactate; ICC > 0.71; CV < 10%; r > 0.85, P < 0.01), gene analysis steps (ICC > 0.73; CV < 24%; r > 0.75, P < 0.01), and similar group-level changes in mRNA expression, individual changes in PGC-1α, PDK4, VEGF-A and p53 mRNA expression were not repeatable (ICC < 0.22; CV > 20%; r < 0.21). Fibre-type distribution in two portions of the same muscle biopsy was highly variable and not significantly related (ICC = 0.39; CV = 26%; r = 0.37, P = 0.37). Since individual changes in mRNA expression following identical exercise bouts were not repeatable, inferences regarding individual responsiveness to END or SIT were not made. Substantial random error exists in changes in mRNA expression following acute exercise, thereby challenging the use of mRNA expression for analysing individual responsiveness to exercise.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Adulto , Treinamento Intervalado de Alta Intensidade/métodos , Humanos , Masculino , Reação em Cadeia da Polimerase/métodos , Adulto Jovem
6.
Appl Physiol Nutr Metab ; 42(6): 656-666, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28177701

RESUMO

The purpose of the present study was to determine if acute responses in PGC-1α, VEGFA, SDHA, and GPD1-2 mRNA expression predict their associated chronic skeletal muscle molecular (SDH-GPD activity and substrate storage) and morphological (fibre-type composition and capillary density) adaptations following training. Skeletal muscle biopsies were collected from 14 recreationally active men (age: 22.0 ± 2.4 years) before (PRE) and 3 h after (3HR) the completion of an acute bout of sprint interval training (SIT) (eight 20-s intervals at ∼170% peak oxygen uptake work rate separated by 10 s of recovery). Participants then completed 6 weeks of SIT 4 times per week with additional biopsies after 2 (MID) and 6 (POST) weeks of training. Acute increases in PGC-1α mRNA strongly predicted increases in SDH activity (a marker of oxidative capacity) from PRE and MID to POST (PRE-POST: r = 0.81, r2 = 0.65, p < 0.01; MID-POST: r = 0.79, r2 = 0.62, p < 0.01) and glycogen content from MID to POST (r = 0.60, r2 = 0.36, p < 0.05). No other significant relationships were found between acute responses in PGC-1α, VEGFA, SDHA, and GPD1-2 mRNA expression and chronic adaptations to training. These results suggest that acute upregulation of PGC-1α mRNA relates to the magnitude of subsequent training-induced increases in oxidative capacity, but not other molecular and morphological chronic skeletal muscle adaptations. Additionally, acute mRNA responses in PGC-1α correlated with VEGFA, but not SDHA, suggesting a coordinated upregulation between PGC-1α and only some of its proposed targets in human skeletal muscle.


Assuntos
Exercício Físico , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Succinato Desidrogenase/metabolismo , Adaptação Fisiológica/genética , Adulto , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Glicogênio/metabolismo , Humanos , Masculino , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Succinato Desidrogenase/genética , Triglicerídeos/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
7.
Appl Physiol Nutr Metab ; 39(11): 1305-13, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25211703

RESUMO

The present study examined the effect of concurrent exercise training and daily resveratrol (RSV) supplementation (150 mg) on training-induced adaptations following low-dose high-intensity interval training (HIIT). Sixteen recreationally active (∼22 years, ∼51 mL·kg(-1)·min(-1)) men were randomly assigned in a double-blind fashion to either the RSV or placebo group with both groups performing 4 weeks of HIIT 3 days per week. Before and after training, participants had a resting muscle biopsy taken, completed a peak oxygen uptake test, a Wingate test, and a submaximal exercise test. A main effect of training (p < 0.05) and interaction effect (p < 0.05) on peak aerobic power was observed; post hoc pairwise comparisons revealed that a significant (p < 0.05) increase occurred in the placebo group only. Main effects of training (p < 0.05) were observed for both peak oxygen uptake (placebo - pretraining: 51.3 ± 1.8, post-training: 54.5 ± 1.5 mL·kg(-1)·min(-1), effect size (ES) = 0.93; RSV - pretraining: 49.6 ± 2.2, post-training: 52.3 ± 2.5 mL·kg(-1)·min(-1), ES = 0.50) and Wingate peak power (placebo: pretraining: 747 ± 39, post-training: 809 ± 31 W, ES = 0.84; RSV - pretraining: 679 ± 39, post-training: 691 ± 43 W, ES = 0.12). Fibre-type distribution was unchanged, while a main effect of training (p < 0.05) was observed for succinate dehydrogenase activity and glycogen content, but not α-glycerophosphate dehydrogenase activity or intramuscular lipids in type I and IIA fibres. The fold change in PGC-1α, SIRT1, and SOD2 gene expression following training was significantly (p < 0.05) lower in the RSV group than placebo. These results suggest that concurrent exercise training and RSV supplementation may alter the normal training response induced by low-volume HIIT.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Exercício Físico/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Estilbenos/farmacologia , Adaptação Fisiológica/fisiologia , Biópsia , Método Duplo-Cego , Teste de Esforço , Feminino , Expressão Gênica , Humanos , Masculino , Músculo Esquelético/fisiologia , Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Resveratrol , Estilbenos/administração & dosagem , Adulto Jovem
8.
PLoS One ; 9(7): e102406, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25019209

RESUMO

The current study tested the hypothesis that a single, moderate dose of RSV would activate the AMPK/SIRT1 axis in human skeletal muscle and adipose tissue. Additionally, the effects of RSV on mitochondrial respiration in PmFBs were examined. Eight sedentary men (23.8±2.4 yrs; BMI: 32.7±7.1) reported to the lab on two occasions where they were provided a meal supplemented with 300 mg of RSV or a placebo. Blood samples, and a muscle biopsy were obtained in the fasted state and again, with the addition of an adipose tissue biopsy, two hours post-prandial. The effect of RSV on mitochondrial respiration was examined in PmFBs taken from muscle biopsies from an additional eight men (23.4±5.4 yrs; BMI: 24.4±2.8). No effect of RSV was observed on nuclear SIRT1 activity, acetylation of p53, or phosphorylation of AMPK, ACC or PKA in either skeletal muscle or adipose tissue. A decrease in post absorptive insulin levels was accompanied by elevated skeletal muscle phosphorylation of p38 MAPK, but no change in either skeletal muscle or adipose tissue insulin signalling. Mitochondrial respiration in PmFBs was rapidly inhibited by RSV at 100-300 uM depending on the substrate examined. These results question the efficacy of a single dose of RSV at altering skeletal muscle and adipose tissue AMPK/SIRT1 activity in humans and suggest that RSV mechanisms of action in humans may be associated with altered cellular energetics resulting from impaired mitochondrial ATP production.


Assuntos
Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Estilbenos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilação , Tecido Adiposo/efeitos dos fármacos , Adulto , Glicemia , Estudos Cross-Over , Método Duplo-Cego , Glicerol/sangue , Humanos , Insulina/sangue , Insulina/metabolismo , Masculino , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Estilbenos/administração & dosagem
9.
PLoS One ; 8(8): e71623, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951207

RESUMO

Muscle activation as well as changes in peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) following high-intensity interval exercise (HIIE) were examined in young healthy men (n  = 8; age, 21.9±2.2 yrs; VO2peak, 53.1±6.4 ml/min/kg; peak work rate, 317±23.5 watts). On each of 3 visits HIIE was performed on a cycle ergometer at a target intensity of 73, 100, or 133% of peak work rate. Muscle biopsies were taken at rest and three hours after each exercise condition. Total work was not different between conditions (∼730 kJ) while average power output (73%, 237±21; 100%, 323±26; 133%, 384±35 watts) and EMG derived muscle activation (73%, 1262±605; 100%, 2089±737; 133%, 3029±1206 total integrated EMG per interval) increased in an intensity dependent fashion. PGC-1α mRNA was elevated after all three conditions (p<0.05), with a greater increase observed following the 100% condition (∼9 fold, p<0.05) compared to both the 73 and 133% conditions (∼4 fold). When expressed relative to muscle activation, the increase in PGC-1α mRNA for the 133% condition was less than that for the 73 and 100% conditions (p<0.05). SIRT1 mRNA was also elevated after all three conditions (∼1.4 fold, p<0.05), with no difference between conditions. These findings suggest that intensity-dependent increases in PGC-1α mRNA following submaximal exercise are largely due to increases in muscle recruitment. As well, the blunted response of PGC-1α mRNA expression following supramaximal exercise may indicate that signalling mediated activation of PGC-1α may also be blunted. We also indentify that increases in PDK4, SIRT1, and RIP140 mRNA following acute exercise are dissociated from exercise intensity and muscle activation, while increases in EGR1 are augmented with supramaximal HIIE (p<0.05).


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Fatores de Transcrição/metabolismo , Adulto , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Eletromiografia , Expressão Gênica , Humanos , Masculino , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA