Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Cancer Chemother Pharmacol ; 94(3): 361-372, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878208

RESUMO

PURPOSE: The purpose of this study was to analyze potential differences in antitumor efficacy and pharmacokinetics between intravenous (IV) bendamustine and a novel orally administered (PO) bendamustine agent that is utilizing the beneficial properties of superstaturated solid dispersions formulated in nanoparticles. METHODS: Pharmacokinetics of IV versus PO bendamustine were determined by analysis of plasma samples collected from NSG mice treated with either IV or PO bendamustine. Plasma samples were analyzed using liquid chromatography-mass spectrometry following a liquid-liquid extraction to determine peak bendamustine concentration, area under the concentration-time curve, and the half-life in-vivo. In-vitro cytotoxicity of bendamustine against human non-Hodgkin Burkitt's Lymphoma (Raji), multiple myeloma (MM.1s), and B-cell acute lymphoblastic leukemia (RS4;11) cell lines was determined over time using MTS assays. Luciferase-tagged versions of the aforementioned cell lines were used to determine in-vivo bendamustine cytotoxicity of IV versus PO bendamustine at two different doses. RESULTS: Bendamustine at a high dose in-vitro causes cell death. There was no significant difference in antitumor activity between IV and novel PO bendamustine at a physiologically relevant concentration in all three xenograft models. In-vivo pharmacokinetics showed the oral bioavailability of bendamustine in mice to be 51.4%. CONCLUSIONS: The novel oral bendamustine agent tested exhibits good oral bioavailability and systemic exposure for in-vivo antitumor efficacy comparable to IV bendamustine. An oral bendamustine formulation offers exciting clinical potential as an additional method of administration for bendamustine and warrants further evaluation in clinical studies.


Assuntos
Administração Intravenosa , Cloridrato de Bendamustina , Neoplasias Hematológicas , Cloridrato de Bendamustina/administração & dosagem , Cloridrato de Bendamustina/farmacocinética , Animais , Humanos , Administração Oral , Camundongos , Linhagem Celular Tumoral , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/farmacocinética
2.
Cancer Res Commun ; 4(5): 1253-1267, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38592213

RESUMO

Exercise mobilizes cytotoxic lymphocytes to blood which may allow superior cell products to be harvested and manufactured for cancer therapy. Gamma-Delta (γδ) T-cells have shown promise for treating solid tumors, but there is a need to increase their potency against hematologic malignancies. Here, we show that human γδ T-cells mobilized to blood in response to just 20 minutes of graded exercise have surface phenotypes and transcriptomic profiles associated with cytotoxicity, adhesion, migration, and cytokine signaling. Following 14 days ex vivo expansion with zoledronic acid and IL2, exercise mobilized γδ T-cells had surface phenotypes and transcriptomic profiles associated with enhanced effector functions and demonstrated superior cytotoxic activity against multiple hematologic tumors in vitro and in vivo in leukemia-bearing xenogeneic mice. Infusing humans with the ß1+ß2-agonist isoproterenol and administering ß1 or ß1+ß2 antagonists prior to exercise revealed these effects to be ß2-adrenergic receptor (AR) dependent. Antibody blocking of DNAM-1 on expanded γδ T-cells, as well as the DNAM-1 ligands PVR and Nectin-2 on leukemic targets, abolished the enhanced antileukemic effects of exercise. These findings provide a mechanistic link between exercise, ß2-AR activation, and the manufacture of superior γδ T-cell products for adoptive cell therapy against hematologic malignancies. SIGNIFICANCE: Exercise mobilizes effector γδ T-cells to blood via ß2-adrenergic signaling which allows for generation of a potent expanded γδ T-cell product that is highly cytotoxic against hematologic malignancies.


Assuntos
Antígenos de Diferenciação de Linfócitos T , Exercício Físico , Receptores Adrenérgicos beta 2 , Regulação para Cima , Animais , Humanos , Masculino , Camundongos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Exercício Físico/fisiologia , Leucemia/imunologia , Leucemia/terapia , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 19(3): e0297387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38470874

RESUMO

Head and neck cancer treatment often consists of surgical resection of the tumor followed by ionizing radiation (IR), which can damage surrounding tissues and cause adverse side effects. The underlying mechanisms of radiation-induced salivary gland dysfunction are not fully understood, and treatment options are scarce and ineffective. The wound healing process is a necessary response to tissue injury, and broadly consists of inflammatory, proliferative, and redifferentiation phases with immune cells playing key roles in all three phases. In this study, select immune cells were phenotyped and quantified, and certain cytokine and chemokine concentrations were measured in mouse parotid glands after IR. Further, we used a model where glandular function is restored to assess the immune phenotype in a regenerative response. These data suggest that irradiated parotid tissue does not progress through a typical inflammatory response observed in wounds that heal. Specifically, total immune cells (CD45+) decrease at days 2 and 5 following IR, macrophages (F4/80+CD11b+) decrease at day 2 and 5 and increase at day 30, while neutrophils (Ly6G+CD11b+) significantly increase at day 30 following IR. Additionally, radiation treatment reduces CD3- cells at all time points, significantly increases CD3+/CD4+CD8+ double positive cells, and significantly reduces CD3+/CD4-CD8- double negative cells at day 30 after IR. Previous data indicate that post-IR treatment with IGF-1 restores salivary gland function at day 30, and IGF-1 injections attenuate the increase in macrophages, neutrophils, and CD4+CD8+ T cells observed at day 30 following IR. Taken together, these data indicate that parotid salivary tissue exhibits a dysregulated immune response following radiation treatment which may contribute to chronic loss of function phenotype in head and neck cancer survivors.


Assuntos
Neoplasias de Cabeça e Pescoço , Glândula Parótida , Camundongos , Animais , Glândula Parótida/efeitos da radiação , Fator de Crescimento Insulin-Like I , Glândulas Salivares , Imunidade
4.
Proteomics ; 24(11): e2300058, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38470197

RESUMO

Previously, we reported that human primary (SW480) and metastatic (SW620) colorectal (CRC) cells release three classes of membrane-encapsulated extracellular vesicles (EVs); midbody remnants (MBRs), exosomes (Exos), and microparticles (MPs). We reported that MBRs were molecularly distinct at the protein level. To gain further biochemical insights into MBRs, Exos, and MPs and their emerging role in CRC, we performed, and report here, for the first time, a comprehensive transcriptome and long noncoding RNA sequencing analysis and fusion gene identification of these three EV classes using the next-generation RNA sequencing technique. Differential transcript expression analysis revealed that MBRs have a distinct transcriptomic profile compared to Exos and MPs with a high enrichment of mitochondrial transcripts lncRNA/pseudogene transcripts that are predicted to bind to ribonucleoprotein complexes, spliceosome, and RNA/stress granule proteins. A salient finding from this study is a high enrichment of several fusion genes in MBRs compared to Exos, MPs, and cell lysates from their parental cells such as MSH2 (gene encoded DNA mismatch repair protein MSH2). This suggests potential EV-liquid biopsy targets for cancer detection. Importantly, the expression of cancer progression-related transcripts found in EV classes derived from SW480 (EGFR) and SW620 (MET and MACCA1) cell lines reflects their parental cell types. Our study is the report of RNA and fusion gene compositions within MBRs (including Exos and MPs) that could have an impact on EV functionality in cancer progression and detection using EV-based RNA/ fusion gene candidates for cancer biomarkers.


Assuntos
Neoplasias Colorretais , Exossomos , Perfilação da Expressão Gênica , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Exossomos/genética , Exossomos/metabolismo , Perfilação da Expressão Gênica/métodos , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Transcriptoma/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
6.
Res Sq ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38313301

RESUMO

Purpose: The purpose of this study was to analyze potential differences in antitumor efficacy and pharmacokinetics between intravenous (IV) bendamustine (BEN) and a novel orally administered bendamustine agent (PO) that is utilizing the beneficial properties of superstaturated solid dispersions formulated in nanoparticles. Methods: Pharmacokinetics of IV versus PO BEN were determined by analysis of plasma samples collected from NSG mice treated with either IV or PO BEN. Plasma samples were analyzed using liquid chromatography-mass spectrometry (LC/MS/MS) following a liquid-liquid extraction to determine peak BEN concentration (Cmax), area under the concentration-time curve (AUC) and the half-life (t1/2) in-vivo. in-vitro cytotoxicity of BEN against human non-Hodgkin's Burkitt's Lymphoma (Raji), multiple myeloma (MM.1s), and B-cell acute lymphoblastic leukemia (RS4;11) cell lines was determined over time using MTS assays. Luciferase-tagged versions of the aforementioned cell lines were used to determine in-vivo BEN cytotoxicity of IV versus PO BEN at two different doses. Results: Bendamustine at a high dose in-vitro causes cell death. There was no significant difference in antitumor efficacy between IV and novel PO BEN at a physiologically relevant concentration in all three xenograft models. In-vivo pharmacokinetics showed the oral bioavailability of BEN in mice to be 51.4%. Conclusions: The novel oral BEN agent tested exhibits good oral bioavailability and systemic exposure for in-vivo antitumor efficacy comparable to IV BEN. An oral BEN formulation offers exciting clinical potential as an additional method of administration for bendamustine and warrants further evaluation in clinical studies.

7.
Nat Rev Immunol ; 24(4): 282-293, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37794239

RESUMO

Regular physical activity is associated with lower cancer incidence and mortality, as well as with a lower rate of tumour recurrence. The epidemiological evidence is supported by preclinical studies in animal models showing that regular exercise delays the progression of cancer, including highly aggressive malignancies. Although the mechanisms underlying the antitumorigenic effects of exercise remain to be defined, an improvement in cancer immunosurveillance is likely important, with different immune cell subtypes stimulated by exercise to infiltrate tumours. There is also evidence that immune cells from blood collected after an exercise bout could be used as adoptive cell therapy for cancer. In this Perspective, we address the importance of muscular activity for maintaining a healthy immune system and discuss the effects of a single bout of exercise (that is, 'acute' exercise) and those of 'regular' exercise (that is, repeated bouts) on anticancer immunity, including tumour infiltrates. We also address the postulated mechanisms and the clinical implications of this emerging area of research.


Assuntos
Exercício Físico , Neoplasias , Animais , Humanos , Sistema Imunitário , Neoplasias/terapia
8.
Front Immunol ; 14: 1329850, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077398

RESUMO

The most common lymphodepletion regimen used prior to infusion of chimeric antigen receptor-T cells (CAR-T) is cyclophosphamide (CY) in combination with fludarabine (Flu) (CY-FLU). While cyclophosphamide (CY) possesses lymphotoxic effects, it concurrently preserves regulatory T cell activity, potentially affecting the efficacy of CAR-T cells. Moreover, the use of fludarabine (FLU) has been linked to neurotoxicity, which could complicate the early detection of immune effector cell-associated neurotoxicity syndrome (ICANS) observed in CAR-T cell therapy. Given the ongoing shortage of FLU, alternative lymphodepleting agents have become necessary. To date, only a limited number of studies have directly compared different lymphodepleting regimens, and most of these comparisons have been retrospective in nature. Herein, we review the current literature on lymphodepletion preceding CAR-T cell therapies for lymphoid hematologic malignancies, with a specific focus on the use of bendamustine (BEN). Recent evidence suggests that administering BEN before CAR-T cell infusion yields comparable efficacy, possibly with a more favorable toxicity profile when compared to CY-FLU. This warrants further investigation through randomized prospective studies.


Assuntos
Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Cloridrato de Bendamustina , Estudos Retrospectivos , Estudos Prospectivos , Ciclofosfamida/uso terapêutico , Ciclofosfamida/farmacologia
9.
BMC Genomics ; 24(1): 735, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049715

RESUMO

BACKGROUND: The frass of several herbivorous insect species has been utilised as natural medicines in Asia; however, the metabolite makeup and pharmaceutical activities of insect frass have yet to be investigated. Oligophagous Papilionidae insects utilise specific kinds of plants, and it has been suggested that the biochemicals from the plants may be metabolised by cytochrome P450 (CYP) in Papilionidae insects. In this study, we extracted the components of the frass of Papilio machaon larvae reared on Angelica keiskei, Oenanthe javanica or Foeniculum vulgare and examined the biological activity of each component. Then, we explored the expression of CYP genes in the midgut of P. machaon larvae and predicted the characteristics of their metabolic system. RESULTS: The components that were extracted using hexane, chloroform or methanol were biochemically different between larval frass and the host plants on which the larvae had fed. Furthermore, a fraction obtained from the chloroform extract from frass of A. keiskei-fed larvae specifically inhibited the cell proliferation of the human colon cancer cell line HCT116, whereas fractions obtained from the chloroform extracts of O. javanica- or F. vulgare-fed larval frass did not affect HCT116 cell viability. The metabolites from the chloroform extract from frass of A. keiskei-fed larvae prevented cell proliferation and induced apoptosis in HCT116 cells. Next, we explored the metabolic enzyme candidates in A. keiskei-fed larvae by RNA-seq analysis. We found that the A. keiskei-fed larval midgut might have different characteristics from the O. javanica- or F. vulgare-fed larval metabolic systems, and we found that the CYP6B2 transcript was highly expressed in the A. keiskei-fed larval midgut. CONCLUSIONS: These findings indicate that P. machaon metabolites might be useful as pharmaceutical agents against human colon cancer subtypes. Importantly, our findings show that it might be possible to use insect metabolic enzymes for the chemical structural conversion of plant-derived compounds with complex structures.


Assuntos
Borboletas , Neoplasias do Colo , Animais , Humanos , Borboletas/metabolismo , Larva/metabolismo , Clorofórmio , Células HCT116 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Extratos Vegetais/farmacologia , Preparações Farmacêuticas
10.
Proteomics ; : e2300057, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507836

RESUMO

Cell-derived extracellular vesicles (EVs) are evolutionary-conserved secretory organelles that, based on their molecular composition, are important intercellular signaling regulators. At least three classes of circulating EVs are known based on mechanism of biogenesis: exosomes (sEVs/Exos), microparticles (lEVs/MPs), and shed midbody remnants (lEVs/sMB-Rs). sEVs/Exos are of endosomal pathway origin, microparticles (lEVs/MPs) from plasma membrane blebbing and shed midbody remnants (lEVs/sMB-Rs) arise from symmetric cytokinetic abscission. Here, we isolate sEVs/Exos, lEVs/MPs, and lEVs/sMB-Rs secreted from human isogenic primary (SW480) and metastatic (SW620) colorectal cancer (CRC) cell lines in milligram quantities for label-free MS/MS-based proteomic profiling. Purified EVs revealed selective composition packaging of exosomal protein markers in SW480/SW620-sEVs/Exos, metabolic enzymes in SW480/SW620-lEVs/MPs, while centralspindlin complex proteins, nucleoproteins, splicing factors, RNA granule proteins, translation-initiation factors, and mitochondrial proteins selectively traffic to SW480/SW620- lEVs/sMB-Rs. Collectively, we identify 39 human cancer-associated genes in EVs; 17 associated with SW480-EVs, 22 with SW620-EVs. We highlight oncogenic receptors/transporters selectively enriched in sEVs/Exos (EGFR/FAS in SW480-sEVs/Exos and MET, TGFBR2, ABCB1 in SW620-sEVs/Exos). Interestingly, MDK, STAT1, and TGM2 are selectively enriched in SW480-lEVs/sMB-Rs, and ADAM15 to SW620-lEVs/sMB-Rs. Our study reveals sEVs/Exos, lEVs/MPs, and lEVs/sMB-Rs have distinct protein signatures that open potential diagnostic avenues of distinct types of EVs for clinical utility.

11.
Front Immunol ; 14: 1067369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077913

RESUMO

Background: Every bout of exercise mobilizes and redistributes large numbers of effector lymphocytes with a cytotoxic and tissue migration phenotype. The frequent redistribution of these cells is purported to increase immune surveillance and play a mechanistic role in reducing cancer risk and slowing tumor progression in physically active cancer survivors. Our aim was to provide the first detailed single cell transcriptomic analysis of exercise-mobilized lymphocytes and test their effectiveness as a donor lymphocyte infusion (DLI) in xenogeneic mice engrafted with human leukemia. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from healthy volunteers at rest and at the end of an acute bout of cycling exercise. Flow cytometry and single-cell RNA sequencing was performed to identify phenotypic and transcriptomic differences between resting and exercise-mobilized cells using a targeted gene expression panel curated for human immunology. PBMCs were injected into the tail vein of xenogeneic NSG-IL-15 mice and subsequently challenged with a luciferase tagged chronic myelogenous leukemia cell line (K562). Tumor growth (bioluminescence) and xenogeneic graft-versus-host disease (GvHD) were monitored bi-weekly for 40-days. Results: Exercise preferentially mobilized NK-cell, CD8+ T-cell and monocyte subtypes with a differentiated and effector phenotype, without significantly mobilizing CD4+ regulatory T-cells. Mobilized effector lymphocytes, particularly effector-memory CD8+ T-cells and NK-cells, displayed differentially expressed genes and enriched gene sets associated with anti-tumor activity, including cytotoxicity, migration/chemotaxis, antigen binding, cytokine responsiveness and alloreactivity (e.g. graft-versus-host/leukemia). Mice receiving exercise-mobilized PBMCs had lower tumor burden and higher overall survival (4.14E+08 photons/s and 47%, respectively) at day 40 compared to mice receiving resting PBMCs (12.1E+08 photons/s and 22%, respectively) from the same donors (p<0.05). Human immune cell engraftment was similar for resting and exercise-mobilized DLI. However, when compared to non-tumor bearing mice, K562 increased the expansion of NK-cell and CD3+/CD4-/CD8- T-cells in mice receiving exercise-mobilized but not resting lymphocytes, 1-2 weeks after DLI. No differences in GvHD or GvHD-free survival was observed between groups either with or without K562 challenge. Conclusion: Exercise in humans mobilizes effector lymphocytes with an anti-tumor transcriptomic profile and their use as DLI extends survival and enhances the graft-versus-leukemia (GvL) effect without exacerbating GvHD in human leukemia bearing xenogeneic mice. Exercise may serve as an effective and economical adjuvant to increase the GvL effects of allogeneic cell therapies without intensifying GvHD.


Assuntos
Doença Enxerto-Hospedeiro , Leucemia , Humanos , Camundongos , Animais , Leucócitos Mononucleares , Transcriptoma , Células Matadoras Naturais , Camundongos Endogâmicos , Leucemia/genética , Leucemia/terapia
12.
Cancers (Basel) ; 15(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37046612

RESUMO

The use of immunotherapies has shown promise against selective human cancers. Identifying novel combinations of innate and adaptive immune cell-activating agents that can work synergistically to suppress tumor growth and provide additional protection against resistance or recurrence is critical. The A20 murine lymphoma model was used to evaluate the effect of various combination immunotherapies administered intratumorally. We show that single-modality treatment with Poly(I:C) or GM-CSF-secreting allogeneic cells only modestly controls tumor growth, whereas when given together there is an improved benefit, with 50% of animals clearing tumors and surviving long-term. Neither heat nor irradiation of GM-CSF-secreting cells enhanced the response over use of live cells. The use of a TIM-3 inhibitory antibody and an OX40 agonist in combination with Poly(I:C) allowed for improved tumor control, with 90% of animals clearing tumors with or without a combination of GM-CSF-secreting cells. Across all treatment groups, mice rejecting their primary A20 tumors were immune to subsequent challenge with A20, and this longstanding immunity was T-cell dependent. The results herein support the use of combinations of innate and adaptive immune activating agents for immunotherapy against lymphoma and should be investigated in other cancer types.

13.
Eur J Haematol ; 110(6): 732-742, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36946440

RESUMO

OBJECTIVE: Examine physical function and T-cell phenotype in patients with chronic lymphocytic leukemia (CLL) before and after a physical activity (PA) intervention. METHODS: Physical function measures and blood samples were collected from CLL patients (Rai stage 0-4, 50% receiving targeted therapy, N = 24) enrolled in a 16-week intervention of at-home aerobic and/or resistance exercise. Flow cytometry characterized T-cells in cryopreserved peripheral blood cells. Wilcoxon signed-rank test compared physical function and T-cell phenotype at baseline and 16-weeks; Kendall's Tau assessed associations between variables. RESULTS: Godin leisure-time PA score increased from baseline to 16-weeks (mean difference: 14.61, p < .01) and fatigue decreased (mean difference: 6.71, p < .001). At baseline, lower fatigue correlated with a lower proportion of CD8+ T-cells (τ = 0.32, p = .03) and cardiorespiratory fitness (CRF) inversely correlated with the percentage of PD-1+CD8+ T-cells (τ -0.31, p = .03). At 16-weeks, CRF inversely correlated with the proportion of PD-1+CD4+ T-cells (τ -0.34, p = .02). Reduced fatigue at 16-weeks correlated with an increased CD4:CD8 ratio (τ = 0.36, p = .02) and lower percentage of HLA-DR+PD-1+CD4+ T-cells (τ = -0.37, p = .01). CONCLUSIONS: This intervention increased leisure-time PA and decreased fatigue in CLL patients. These changes correlated with an increased CD4:CD8 T-cell ratio and reduced proportion of T-cells subsets previously associated with poor outcomes in CLL patients. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02194387.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/terapia , Projetos Piloto , Receptor de Morte Celular Programada 1 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Fadiga/etiologia
14.
Methods Mol Biol ; 2628: 3-18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781775

RESUMO

Platelets are specialized cellular elements of blood and play a central role in maintaining normal hemostasis, wound healing, and host defense but also are implicated in pathologic processes of thrombosis, inflammation, and tumor progression and dissemination. Transfusion of platelet concentrates is an important treatment for thrombocytopenia (low platelet count) due to disease or significant blood loss, with the goal being to prevent bleeding or to arrest active bleeding. In blood circulation, platelets are in a resting state; however, when triggered by a stimulus, such as blood vessel injury, become activated (also termed procoagulant). Platelet activation is the basis of their biological function to arrest active bleeding, comprising a complex interplay of morphological phenotype/shape change, adhesion, expression of signaling molecules, and release of bioactive factors, including extracellular vesicles/microparticles. Advances in high-throughput mRNA and protein profiling techniques have brought new understanding of platelet biological functions, including identification of novel platelet proteins and secreted molecules, analysis of functional changes between normal and pathologic states, and determining the effects of processing and storage on platelet concentrates for transfusion. However, because platelets are very easily activated, it is important to understand the different in vitro methods for platelet isolation commonly used and how they differ from the perspective for use as research samples in clinical chemistry. Two simple methods are described here for the preparation of research-scale platelet samples from human whole blood, and detailed notes are provided about the methods used for the preparation of platelet concentrates for transfusion.


Assuntos
Plaquetas , Trombocitopenia , Humanos , Transfusão de Sangue , Hemostasia , Ativação Plaquetária , Hemorragia
15.
Med Sci Sports Exerc ; 55(6): 991-1002, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719647

RESUMO

PURPOSE: Acute exercise redistributes large numbers of memory T cells, which may contribute to enhanced immune surveillance in regular exercisers. It is not known, however, if acute exercise promotes a broad or oligoclonal T-cell receptor (TCR) repertoire or evokes transcriptomic changes in "exercise-responsive" T-cell clones. METHODS: Healthy volunteers completed a graded bout of cycling exercise up to 80% V̇O 2max . DNA was extracted from peripheral blood mononuclear cells collected at rest, during exercise (EX), and 1 h after (+1H) exercise, and processed for deep TCR-ß chain sequencing and tandem single-cell RNA sequencing. RESULTS: The number of unique clones and unique rearrangements was decreased at EX compared with rest ( P < 0.01) and +1H ( P < 0.01). Productive clonality was increased compared with rest ( P < 0.05) and +1H ( P < 0.05), whereas Shannon's Index was decreased compared with rest ( P < 0.05) and +1H ( P < 0.05). The top 10 rearrangements in the repertoire were increased at EX compared with rest ( P < 0.05) and +1H ( P < 0.05). Cross-referencing TCR-ß sequences with a public database (VDJdb) revealed that exercise increased the number of clones specific for the most prevalent motifs, including Epstein-Barr virus, cytomegalovirus, and influenza A. We identified 633 unique exercise-responsive T-cell clones that were mobilized and/or egressed in response to exercise. Among these clones, there was an upregulation in genes related to cell death, cytotoxicity, and activation ( P < 0.05). CONCLUSIONS: Acute exercise promotes an oligoclonal T-cell repertoire by preferentially mobilizing the most dominant clones, several of which are specific to known viral antigens and display differentially expressed genes indicative of cytotoxicity, activation, and apoptosis.


Assuntos
Infecções por Vírus Epstein-Barr , Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Leucócitos Mononucleares/metabolismo , Herpesvirus Humano 4/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Células Clonais/metabolismo , Exercício Físico
16.
Front Immunol ; 13: 938106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189306

RESUMO

CD3+/CD56+ Natural killer (NK) cell-like T-cells (NKT-like cells) represent <5% of blood lymphocytes, display a cytotoxic phenotype, and can kill various cancers. NKT-like cells can be expanded ex vivo into cytokine-induced killer (CIK) cells, however this therapeutic cell product has had mixed results against hematological malignancies in clinical trials. The aim of this study was to determine if NKT-like cells mobilized during acute cycling exercise could be used to generate more potent anti-tumor CIK cells from healthy donors. An acute exercise bout increased NKT-like cell numbers in blood 2-fold. Single cell RNA sequencing revealed that exercise mobilized NKT-like cells have an upregulation of genes and transcriptomic programs associated with enhanced anti-tumor activity, including cytotoxicity, cytokine responsiveness, and migration. Exercise, however, did not augment the ex vivo expansion of CIK cells or alter their surface phenotypes after 21-days of culture. CIK cells expanded at rest, during exercise (at 60% and 80% VO2max) or after (1h post) were equally capable of killing leukemia, lymphoma, and multiple myeloma target cells with and without cytokine (IL-2) and antibody (OKT3) priming in vitro. We conclude that acute exercise in healthy donors mobilizes NKT-like cells with an upregulation of transcriptomic programs involved in anti-tumor activity, but does not augment the ex vivo expansion of CIK cells.


Assuntos
Células Matadoras Induzidas por Citocinas , Neoplasias , Citotoxicidade Imunológica , Exercício Físico , Humanos , Interleucina-2/farmacologia , Muromonab-CD3/farmacologia , Transcriptoma
17.
PLoS One ; 17(8): e0273075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35980974

RESUMO

The immediate precursor to murine type 1 conventional DCs (cDC1s) has recently been established and named "pre-cDC1s". Mature CD8α+ cDC1s are recognized for suppressing graft-versus-host disease (GvHD) while promoting graft-versus-leukemia (GvL), however pre-cDC1s have not previously been investigated in the context of alloreactivity or anti-tumor responses. Characterization of pre-cDC1s, compared to CD8α+ cDC1s, found that a lower percentage of pre-cDC1s express PD-L1, yet express greater PD-L1 by MFI and a greater percent PIR-B, a GvHD-suppressing molecule. Functional assays were performed ex vivo following in vivo depletion of CD8α+ DCs to examine whether pre-cDC1s play a redundant role in alloreactivity. Proliferation assays revealed less allogeneic T-cell proliferation in the absence of CD8α+ cDC1s, with slightly greater CD8+ T-cell proliferation. Further, in the absence of CD8α+ cDC1s, stimulated CD8+ T-cells exhibited significantly less PD-1 expression compared to CD4+ T-cells, and alloreactive T-cell death was significantly lower, driven by reduced CD4+ T-cell death. Tumor-killing assays revealed that T-cells primed with CD8α-depleted DCs ex vivo induce greater killing of A20 B-cell leukemia cells, particularly when antigen (Ag) is limited. Bulk RNA sequencing revealed distinct transcriptional programs of these DCs, with pre-cDC1s exhibiting activated PD-1/PD-L1 signaling compared to CD8α+ cDC1s. These results indicate distinct T-cell-priming capabilities of murine pre-cDC1s compared to CD8α+ cDC1s ex vivo, with potentially clinically relevant implications in suppressing GvHD while promoting GvL responses, highlighting the need for greater investigation of murine pre-cDC1s.


Assuntos
Doença Enxerto-Hospedeiro , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Células Dendríticas , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo
18.
Front Biosci (Landmark Ed) ; 27(7): 215, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35866402

RESUMO

BACKGROUND: We have previously shown that the anti-tumor activity of human lymphocytes is diminished in vitro after 12-hours pre-exposure to simulated microgravity (SMG). Here we used an immunocompromised mouse model to determine if this loss of function would extend in vivo, and to also test the efficacy of IL-2 and zoledronic acid (ZOL) therapy as a potential countermeasure against SMG-induced immune dysfunction. We adoptively transferred human lymphocytes that were exposed to either SMG or 1G-control into NSG-Tg (Hu-IL15) mice 1-week after they were injected with a luciferase-tagged human chronic myeloid leukemia (K562) cell line. Tumor growth was monitored 2x weekly with bioluminescence imaging (BLI) for up to 6-weeks. RESULTS: Mice that received lymphocytes exposed to SMG showed greater tumor burden compared to those receiving lymphocytes exposed to 1G (week 6 BLI: 1.8e10 ± 8.07e9 versus 2.22e8 ± 1.39e8 photons/second; p < 0.0001). Peak BLI was also higher in the SMG group compared to 1G-control (2.34e10 ± 1.23e10 versus 3.75e8 ± 1.56e8 photons/second; p = 0.0062). Exposure to SMG did not affect the ability of human lymphocytes to engraft or evoke xeno-graft-versus-host disease in the mice. Additionally, we injected the mice with IL-2 and zoledronic acid (ZOL) to expand and activate the anti-tumor activity of NK cells and γ δ-T cells, respectively. This treatment was found to revive the loss of anti-leukemic function observed in vivo when lymphocytes were pre-exposed to SMG. CONCLUSIONS: Microgravity plays a contributory role in loss of tumor control in vivo. Immuno-stimulating agents like ZOL+IL-2 may offer an important countermeasure for immune dysregulation during prolonged spaceflight.


Assuntos
Ausência de Peso , Animais , Humanos , Interleucina-2/farmacologia , Células Matadoras Naturais , Camundongos , Linfócitos T , Ácido Zoledrônico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA