Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011912, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190411

RESUMO

BST2/Tetherin is a restriction factor with broad antiviral activity against enveloped viruses, including coronaviruses. Specifically, BST2 traps nascent particles to membrane compartments, preventing their release and spread. In turn, viruses have evolved multiple mechanisms to counteract BST2. Here, we examined the interactions between BST2 and SARS-CoV-2. Our study shows that BST2 reduces SARS-CoV-2 virion release. However, the virus uses the Spike (S) protein to downregulate BST2. This requires a physical interaction between S and BST2, which routes BST2 for lysosomal degradation in a Clathtin- and ubiquitination-dependent manner. By surveying different SARS-CoV-2 variants of concern (Alpha-Omicron), we found that Omicron is more efficient at counteracting BST2, and that mutations in S account for its enhanced anti-BST2 activity. Mapping analyses revealed that several surfaces in the extracellular region of BST2 are required for an interaction with the Spike, and that the Omicron variant has changed its patterns of association with BST2 to improve its counteraction. Therefore, our study suggests that, besides enhancing receptor binding and evasion of neutralizing antibodies, mutations accumulated in the Spike afford more efficient counteraction of BST2, which highlights that BST2 antagonism is important for SARS-CoV-2 infectivity and spread.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , COVID-19 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Mutação , Glicoproteína da Espícula de Coronavírus/genética
2.
Viruses ; 15(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766367

RESUMO

SERINC5 is a restriction factor that becomes incorporated into nascent retroviral particles, impairing their ability to infect target cells. In turn, retroviruses have evolved countermeasures against SERINC5. For instance, the primate lentiviruses (HIV and SIV) use Nef, Moloney Murine Leukemia Virus (MLV) uses GlycoGag, and Equine Infectious Anemia Virus (EIAV) uses S2 to remove SERINC5 from the plasma membrane, preventing its incorporation into progeny virions. Recent studies have shown that SERINC5 also restricts other viruses, such as Hepatitis B Virus (HBV) and Classical Swine Fever Virus (CSFV), although through a different mechanism, suggesting that SERINC5 can interfere with multiple stages of the virus life cycle. To investigate whether SERINC5 can also impact other steps of the replication cycle of HIV, the effects of SERINC5 on viral transcripts, proteins, and virus progeny size were studied. Here, we report that SERINC5 causes significant defects in HIV gene expression, which impacts virion production. While the underlying mechanism is still unknown, we found that the restriction occurs at the transcriptional level and similarly affects plasmid and non-integrated proviral DNA (ectopic or non-self-DNA). However, SERINC5 causes no defects in the expression of viral RNA, host genes, or proviral DNA that is integrated in the cellular genome. Hence, our findings reveal that SERINC5's actions in host defense extend beyond blocking virus entry.


Assuntos
Vírus da Febre Suína Clássica , Infecções por HIV , Animais , Suínos , Cavalos , Camundongos , Antivirais , DNA , Membrana Celular , Provírus , Retroviridae
3.
J Vet Pharmacol Ther ; 45(6): 508-515, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35899472

RESUMO

The purpose of this study was to evaluate the pharmacokinetics of intravenous (IV) ondansetron in a population of hospitalized dogs exhibiting clinical signs of nausea. The causes of nausea included pancreatitis, gastroenteritis, endocarditis, chemotherapy-induced nausea, diabetes mellitus and ketoacidosis, acute kidney injury with aspiration pneumonia, pyometra, uroabdomen, neoplasia, and hepatopathy. Twenty-four dogs were randomly assigned to one of the following IV ondansetron protocols: 1 mg/kg q12h, 0.5 mg/kg q12h, 1 mg/kg q8h, 0.5 mg/kg q8h. Serum was collected at 0, 0.25, 0.5, 1, 2, 4, 8, 16, and 24 h after the first dose, and nausea scores were recorded at multiple time points. Ondansetron and arginine vasopressin (AVP) concentrations were measured via high-performance liquid chromatography coupled to tandem mass spectrometry and ELISA, respectively. Noncompartmental pharmacokinetic modeling and dose interval modeling were performed. Ondansetron displayed linear pharmacokinetics. In the 0.5 mg/kg group, mean Cmax  = 214 ng/ml, AUC0-8h  = 463 ng/ml*h, and calculated half-life was 1.9 h. In the 1 mg/kg group, mean Cmax  = 541 ng/ml, AUC0-8h  = 1057 ng/ml*h and calculated half-life was 1.6 h. Serum ondansetron concentrations were not significantly different between dogs that required rescue anti-nausea medication (non-responders) and dogs that did not require rescue therapy (responders). In total, 83.3% of patients in the 0.5 mg/kg q8h, 0.5 mg/kg q12h, and 1 mg/kg q8h groups had improvement in nausea scores. In total, 66.7% of patients in the 1 mg/kg q12h group had improvement in nausea scores. In total, 33% of patients had resolution of nausea in the 0.5 mg/kg q8h, 1 mg/kg q8h, and 1 mg/kg q12h groups, and 16% of patients had resolution of nausea in the 0.5 mg/kg q12h group. AVP concentrations were highly variable and did not correlate with nausea scores. Nausea scores significantly decreased regardless of dosage protocol. AVP was not a reliable biomarker of nausea in this group of dogs.


Assuntos
Antieméticos , Ondansetron , Cães , Animais , Ondansetron/uso terapêutico , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Náusea/veterinária , Meia-Vida , Área Sob a Curva , Método Duplo-Cego
4.
Front Immunol ; 12: 682624, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025682

RESUMO

Ubiquitination is a process that acts upon every step of the HIV replication cycle. The activity, subcellular localization, and stability of HIV dependency factors as well as negative modulators can be affected by ubiquitination. These modifications consequently have an impact on the progression and outcome of infection. Additionally, recent findings suggest new roles for ubiquitination in the interplay between HIV and the cellular environment, specifically in the interactions between HIV, autophagy and apoptosis. On one hand, autophagy is a defense mechanism against HIV that promotes the degradation of the viral protein Gag, likely through ubiquitination. Gag is an essential structural protein that drives virion assembly and release. Interestingly, the ubiquitination of Gag is vital for HIV replication. Hence, this post-translational modification in Gag represents a double-edged sword: necessary for virion biogenesis, but potentially detrimental under conditions of autophagy activation. On the other hand, HIV uses Nef to circumvent autophagy-mediated restriction by promoting the ubiquitination of the autophagy inhibitor BCL2 through Parkin/PRKN. Although the Nef-promoted ubiquitination of BCL2 occurs in both the endoplasmic reticulum (ER) and mitochondria, only ER-associated ubiquitinated BCL2 arrests the progression of autophagy. Importantly, both mitochondrial BCL2 and PRKN are tightly connected to mitochondrial function and apoptosis. Hence, by enhancing the PRKN-mediated ubiquitination of BCL2 at the mitochondria, HIV might promote apoptosis. Moreover, this effect of Nef might account for HIV-associated disorders. In this article, we outline our current knowledge and provide perspectives of how ubiquitination impacts the molecular interactions between HIV, autophagy and apoptosis.


Assuntos
Apoptose , Autofagia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , HIV/fisiologia , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitinação
5.
Front Microbiol ; 9: 788, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740418

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus responsible for the development of Kaposi's sarcoma, primary effusion lymphoma (PEL), and Multicentric Castleman's disease in immunocompromised individuals. Despite the burden of these diseases there are few treatment options for afflicted individuals, due in part to our limited understanding of virus-host interactions. Tip60, a histone aceytltransferase (HAT) has been previously shown to interact with both the KSHV latency associated nuclear antigen protein (LANA), which is the main factor in maintaining the viral latent state, and ORF36, a viral kinase expressed in the lytic phase. We further investigated Tip60-virus interaction to ascertain Tip60's role in the viral life cycle and its potential as a target for future therapeutics. Through modulation of Tip60 expression in HEK293T cells harboring a plasmid containing the KSHV viral episome, Bac36, we found that Tip60 is vital for both lytic replication as well as efficient expression of latent genes. Interestingly, Tip60 small molecule inhibitors, MG149 and NU9056, similarly inhibited latent and lytic genes, and reduced virion production in wild-type KSHV+/EBV- PEL, BCBL-1 cells. Long-term treatment with these Tip60 inhibitors selectively decreased the viability of KSHV-infected B lymphoma cells compared to uninfected cells. From this study, we conclude that Tip60 is important for KSHV infection and its associated cancer development, and Tip60 is therefore a potential target for future antiviral and anticancer therapeutics.

6.
J Biol Chem ; 290(45): 27297-27310, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26378236

RESUMO

Our functional genomic RNAi screens have identified the protein components of the FACT (facilitates chromatin transcription) complex, SUPT16H and SSRP1, as top host factors that negatively regulate HIV-1 replication. FACT interacts specifically with histones H2A/H2B to affect assembly and disassembly of nucleosomes, as well as transcription elongation. We further investigated the suppressive role of FACT proteins in HIV-1 transcription. First, depletion of SUPT16H or SSRP1 protein enhances Tat-mediated HIV-1 LTR (long terminal repeat) promoter activity. Second, HIV-1 Tat interacts with SUPT16H but not SSRP1 protein. However, both SUPT16H and SSRP1 are recruited to LTR promoter. Third, the presence of SUPT16H interferes with the association of Cyclin T1 (CCNT1), a subunit of P-TEFb, with the Tat-LTR axis. Removing inhibitory mechanisms to permit HIV-1 transcription is an initial and key regulatory step to reverse post-integrated latent HIV-1 proviruses for purging of reservoir cells. We therefore evaluated the role of FACT proteins in HIV-1 latency and reactivation. Depletion of SUPT16H or SSRP1 protein affects both HIV-1 transcriptional initiation and elongation and spontaneously reverses latent HIV-1 in U1/HIV and J-LAT cells. Similar effects were observed with a primary CD4+ T cell model of HIV-1 latency. FACT proteins also interfere with HTLV-1 Tax-LTR-mediated transcription and viral latency, indicating that they may act as general transcriptional suppressors for retroviruses. We conclude that FACT proteins SUPT16H and SSRP1 play a key role in suppressing HIV-1 transcription and promoting viral latency, which may serve as promising gene targets for developing novel HIV-1 latency-reversing agents.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , HIV-1/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Fatores de Transcrição/fisiologia , Fatores de Elongação da Transcrição/fisiologia , Latência Viral/fisiologia , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD4-Positivos/virologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular , Ciclina T/fisiologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Células HEK293 , Repetição Terminal Longa de HIV , HIV-1/genética , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Proteínas de Grupo de Alta Mobilidade/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Modelos Biológicos , Fator B de Elongação Transcricional Positiva/fisiologia , Regiões Promotoras Genéticas , Interferência de RNA , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/antagonistas & inibidores , Fatores de Elongação da Transcrição/genética , Latência Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA