Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(5): 4815-4831, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38785558

RESUMO

Osteosarcoma malignancy currently represents a major health problem; therefore, the need for new therapy approaches is of great interest. In this regard, the current study aims to evaluate the anti-neoplastic potential of a newly developed phosphinic acid derivative (2-carboxyethylphenylphosphinic acid) and, subsequently, to outline its pharmaco-toxicological profile by employing two different in vitro human cell cultures (keratinocytes-HaCaT-and osteosarcoma SAOS-2 cells), employing different techniques (MTT assay, cell morphology assessment, LDH assay, Hoechst staining and RT-PCR). Additionally, the results obtained are compared with three commercially available phosphorus-containing compounds (P1, P2, P3). The results recorded for the newly developed compound (P4) revealed good biocompatibility (cell viability of 77%) when concentrations up to 5 mM were used on HaCaT cells for 24 h. Also, the HaCaT cultures showed no significant morphological alterations or gene modulation, thus achieving a biosafety profile even superior to some of the commercial products tested herein. Moreover, in terms of anti-osteosarcoma activity, 2-carboxyethylphenylphosphinic acid expressed promising activity on SAOS-2 monolayers, the cells showing viability of only 55%, as well as apoptosis features and important gene expression modulation, especially Bid downregulation. Therefore, the newly developed compound should be considered a promising candidate for further in vitro and in vivo research related to osteosarcoma therapy.

2.
Molecules ; 28(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838946

RESUMO

Carbonyl olefinations are among the most important organic syntheses that form C=C bonds, as they usually have high yields and in addition offer excellent stereoselectivity. Due to these advantages, carbonyl olefinations have important pharmaceutical and industrial applications. These reactions contain an additional step of an α-functionalized carbanion to an aldehyde or ketone to produce alkenes, but syntheses performed using metal carbene complexes are also known. The Wittig reaction is an example of carbonyl olefination, one of the best ways to synthesize alkenes. This involves the chemical reaction between an aldehyde or ketone with a so-called Wittig reagent, for instance phosphonium ylide. Triphenylphosphine-derived ylides and trialkylphosphine-derived ylides are the most common phosphorous compounds used as Wittig reagents. The Wittig reaction is commonly involved in the synthesis of novel anti-cancer and anti-viral compounds. In recent decades, the use of ultrasound on the Wittig reaction (and on different modified Wittig syntheses, such as the Wittig-Horner reaction or the aza-Wittig method) has been studied as a green synthesis. In addition to the advantage of green synthesis, the use of ultrasounds in general also improved the yield and reduced the reaction time. All of these chemical syntheses conducted under ultrasound will be described further in the present review.


Assuntos
Alcenos , Sonicação , Estrutura Molecular , Alcenos/química , Aldeídos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA