Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921784

RESUMO

Enteric infections due to viral pathogens are a major public health concern. Detecting the risk areas requires a strong surveillance system for pathogenic viruses in sources such as wastewater. Towards building an environmental surveillance system in Zambia, we aimed to identify group A rotavirus (RVA) and human adenovirus (HAdV) in wastewater. Convenient sampling was conducted at four study sites every Tuesday for five consecutive weeks. The research team focused on three different methods of viral concentration to determine the suitability in terms of cost and applicability for a regular surveillance system: the bag-mediated filtration system (BMFS), polyethylene glycol-based (PEG) precipitation, and skimmed milk (SM) flocculation. We screened 20 wastewater samples for HAdV and RVA using quantitative polymerase chain reaction (qPCR) and conventional polymerase chain reaction (cPCR). Of the 20 samples tested using qPCR, 18/20 (90%) tested positive for HAdV and 14/20 (70%) tested positive for RVA. For the genetic sequencing, qPCR positives were subjected to cPCR, of which 12 positives were successfully amplified. The human adenovirus was identified with a nucleotide identity range of 98.48% to 99.53% compared with the reference genome from GenBank. The BMFS and SM flocculation were the most consistent viral concentration methods for HAdV and RVA, respectively. A statistical analysis of the positives showed that viral positivity differed by site (p < 0.001). SM and PEG may be the most appropriate options in resource-limited settings such as Zambia due to the lower costs associated with these concentration methods. The demonstration of HAdV and RVA detection in wastewater suggests the presence of the pathogens in the communities under study and the need to establish a routine wastewater surveillance system for the identification of pathogens.

2.
IJID Reg ; 8: 90-94, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37533553

RESUMO

Objectives: Limited data on respiratory infections are available from sub-Saharan Africa during the COVID-19 pandemic. The objective of this study was to evaluate the burden of respiratory viruses in rural Zambia from 2019-2021. Methods: Surveillance was initiated at Macha Hospital in Zambia in December 2018. Each week, patients with respiratory symptoms were enrolled from the outpatient clinic. Nasopharyngeal samples were collected and tested for respiratory pathogens. The prevalence of respiratory symptoms and viruses in 2021 was compared to results from 2019 and 2020. Results: After seeing few cases of influenza virus and respiratory syncytial virus in 2020, a return to prepandemic levels was observed in 2021. Rhinovirus/enterovirus, parainfluenza virus 1-4, and adenovirus circulated from 2019 to 2021, while human metapneumovirus and human coronaviruses (HKU1, 229E, OC43, and NL63 subtypes) were observed sporadically. SARS-CoV-2 was observed consistently in 2021 after being first identified in December 2020. The proportion of participants with co-infections in 2021 (11.6%) was significantly higher than in 2019 (6.9%) or 2020 (7.7%). Conclusion: Declines in influenza virus and respiratory syncytial virus were reversed once public health measures were lifted. Respiratory viruses contributed to a significant burden of respiratory infections in 2021. This study provides important information about respiratory viruses in this changing context and underrepresented region.

3.
Viruses ; 15(6)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37376669

RESUMO

Bats are of significant interest as reservoirs for various zoonotic viruses with high diversity. During the past two decades, many herpesviruses have been identified in various bats worldwide by genetic approaches, whereas there have been few reports on the isolation of infectious herpesviruses. Herein, we report the prevalence of herpesvirus infection of bats captured in Zambia and genetic characterization of novel gammaherpesviruses isolated from striped leaf-nosed bats (Macronycteris vittatus). By our PCR screening, herpesvirus DNA polymerase (DPOL) genes were detected in 29.2% (7/24) of Egyptian fruit bats (Rousettus aegyptiacus), 78.1% (82/105) of Macronycteris vittatus, and one Sundevall's roundleaf bat (Hipposideros caffer) in Zambia. Phylogenetic analyses of the detected partial DPOL genes revealed that the Zambian bat herpesviruses were divided into seven betaherpesvirus groups and five gammaherpesvirus groups. Two infectious strains of a novel gammaherpesvirus, tentatively named Macronycteris gammaherpesvirus 1 (MaGHV1), were successfully isolated from Macronycteris vittatus bats, and their complete genomes were sequenced. The genome of MaGHV1 encoded 79 open reading frames, and phylogenic analyses of the DNA polymerase and glycoprotein B demonstrated that MaGHV1 formed an independent lineage sharing a common origin with other bat-derived gammaherpesviruses. Our findings provide new information regarding the genetic diversity of herpesviruses maintained in African bats.


Assuntos
Quirópteros , Gammaherpesvirinae , Herpesviridae , Animais , Filogenia , Zâmbia/epidemiologia , Herpesviridae/genética
4.
Plant Dis ; 106(9): 2380-2391, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35188414

RESUMO

The production of common bean (Phaseolus vulgaris L.) is adversely affected by virus-like diseases globally, but little is known about the occurrence, distribution, and diversity of common bean-infecting viruses in Zambia. Consequently, field surveys were conducted during the 2018 season in 128 fields across six provinces of Zambia and 640 common bean leaf tissue samples were collected with (n = 585) or without (n = 55) symptoms. The prevalence of symptomatic fields was 100%, but incidence of symptomatic plants ranged from 32 to 67.5%. Metagenomic analyses of nine composite samples and a single plant sample of interest revealed the occurrence of isolates of Bean common mosaic necrosis virus, Bean common mosaic virus, Cowpea aphid-borne mosaic virus, Peanut mottle virus, Southern bean mosaic virus (SBMV), Cucumber mosaic virus, Phaseolus vulgaris alphaendornavirus 1 (PvEV-1), PvEV-2, Ethiopian tobacco bushy top virus (ETBTV), and a novel strain of Cowpea polerovirus 1 (CPPV1-Pv) of 5,902 nt in length. While CPPV1-Pv was consistently detected in mixed infection with ETBTV and its satellite RNA molecule, based on results of mechanical transmission assays it does not appear to be involved in disease etiology, suggesting that its role may be limited to being a helper virus for the umbravirus. Screening of the survey samples by real-time PCR for the viruses detected by high-throughput sequencing revealed the prevalence of single (65.2% or 417/640) over mixed (1.9% or 12/640) infections in the samples. SBMV was the most frequently detected virus, occurring in ∼29.4% (188/640) of the samples and at a prevalence rate of 58.6% (75/128) across fields. The results showed that diverse virus species are present in Zambian common bean fields and the information will be useful for the management of common bean viral diseases.


Assuntos
Luteoviridae , Phaseolus , Vigna , Luteoviridae/genética , Doenças das Plantas , Vírus de Plantas , Zâmbia
5.
Plant Dis ; 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32910722

RESUMO

During surveys for common bean viruses in Central Province of Zambia in April 2018, symptoms of bushy top, deep green curled branches and patchy leaf chlorosis were observed on five plants in a 2-ha farmer's field. Total RNA was isolated from symptomatic leaf samples using the CTAB method (Chang et al. 1993). The RNA from one sample (CP414-1) was used to construct a cDNA library with the Illumina TruSeq RNA Library Prep Kit (Illumina, San Diego, CA), followed by high-throughput sequencing (HTS) on the Illumina MiSeq platform that generated ~3.1M single-end raw reads of ~300 nucleotides (nt) each. A total of 355,885 reads showed hits to Ethiopian tobacco bushy top virus (ETBTV; Umbravirus), ETBTV satellite RNA (satRNA) and peanut mottle virus (PeMoV, Potyvirus) based on BLASTn analysis. The full-length genomes of ETBTV (4239-nt; MT225089), its satRNA (521-nt; MT225092) and PeMoV (9,643-nt) were assembled from the HTS reads using Geneious R11.1.2 (Biomatters, Auckland, New Zealand). The obtained complete genome sequences of ETBTV (MT225089) and ETBTV satRNA (MT225092) shared 88% and 95% nt identities, respectively with the corresponding viral (KJ918748) and satRNA (KJ918747) sequences of isolate 18-2 (Abraham et al. 2014). The near complete PeMoV genome was 89% identical to isolate Liaoning (MH270528). The HTS results were validated by two-step RT-PCR analyses of the five field-collected samples using newly designed primer pairs (data not shown). All five samples gave the expected 988-bp ETBTV-specific and 521-bp satRNA-specific DNA bands while three samples produced the expected 2100-bp PeMoV-specific fragment. The virus specificities of the agent specific PCR fragments were ascertained by Sanger sequencing (ETBTV: MT225090-91; ETBTV satRNA: MT225093-94; PeMoV: MT900843-44) and they shared 98-100% identities with their corresponding HTS-derived sequences. To further probe for the presence of an ETBTV helper virus, the samples were screened by RT-PCR with the degenerate primer pair Lu1-mod-F/C2R3 that was modified from Robertson et al. (1991). The expected 245-bp DNA bands was obtained from all five samples, indicating the presence of a possible luteovirus or polerovirus target in these samples. The BLASTn analyses of the two Sanger sequenced gel-eluted products (MT900845-46) showed that they shared 100% identity with each other and 96% nt identity with cowpea polerovirus 1 (CPPV1, KX599163). Leaf tissue extracts from a common bean plant that was confirmed by RT-PCR to be positive for all four agents were rub-inoculated onto Nicotiana occidentalis and common bean (Sutter Pink) plants (n=5 each) at the three fully expanded leaf stage, with a buffer inoculation as control. Systemic foliar symptoms consisting of leaf deformation, stunting and leaf bushy top were observed on all ten plants, 10 days post-inoculation whereas the control plants remained symptomless. All the test plants were screened by RT-PCR as described above. The results showed that all five N. occidentalis plants were positive for ETBTV+ETBTVsatRNA, the five common bean plants tested positive for ETBTV+satRNA+PeMoV, and all 10 plants of both species were negative for CPPV1. To the best of our knowledge, this is the first report of ETBTV, ETBTV satRNA and CPPV1 infecting common bean in Zambia, and the first molecular based confirmation of PeMoV occurrence in the country. Ongoing studies are focused on determining the extent of the disease spread and assessment of its economic impact.

6.
Arch Virol ; 164(10): 2531-2536, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31300890

RESUMO

Whilst bovine leukemia virus (BLV) causes considerable economic losses to the dairy industry worldwide, information on its molecular epidemiology and economic impact in beef cattle is limited. Here, blood from 880 animals from Zambia's major cattle-rearing provinces was screened for BLV by nested PCR. Positive pools were sequenced and phylogenetically analyzed. The estimated pooled prevalence was 2.1%. All strains belonged to genotype 1 and formed a distinct phylogenetic cluster. The study suggests circulation of genotype 1 BLV in beef cattle in these regions. This is the first report on molecular detection and characterization of BLV from beef cattle in Africa.


Assuntos
Leucose Enzoótica Bovina/epidemiologia , Leucose Enzoótica Bovina/virologia , Genótipo , Vírus da Leucemia Bovina/genética , Vírus da Leucemia Bovina/isolamento & purificação , Animais , Bovinos , Vírus da Leucemia Bovina/classificação , Epidemiologia Molecular , Filogenia , Reação em Cadeia da Polimerase , Prevalência , Análise de Sequência de DNA , Zâmbia/epidemiologia
7.
Arch Virol ; 162(4): 1051-1056, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28025710

RESUMO

Bovine leukemia virus (BLV) causes enzootic bovine leucosis (EBL) and is responsible for substantial economic losses in cattle globally. However, information in Africa on the disease is limited. Here, based on clinical, hematological, pathological and molecular analyses, two clinical cases of EBL were confirmed in a dairy cattle herd in Zambia. In contrast, proviral DNA was detected by PCR in five apparently healthy cows from the same herd, suggesting subclinical BLV infection. Phylogenetic analysis of the env gene showed that the identified BLV clustered with Eurasian genotype 4 strains. This is the first report of confirmed EBL in Zambia.


Assuntos
Leucose Enzoótica Bovina/virologia , Vírus da Leucemia Bovina/isolamento & purificação , Sequência de Aminoácidos , Animais , Bovinos , Feminino , Genótipo , Vírus da Leucemia Bovina/química , Vírus da Leucemia Bovina/classificação , Vírus da Leucemia Bovina/genética , Masculino , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética , Zâmbia
8.
Arch Virol ; 161(3): 513-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26597187

RESUMO

Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive viral disease of young chickens and remains one of the economically most important diseases threatening the poultry industry worldwide. In this study, 16 and 11 nucleotide sequences of the VP2 hypervariable region (VP2-HVR) and part of VP1, respectively, of IBD virus (IBDV) detected in vaccinated broiler chickens in Lusaka in 2012 were determined. Phylogenetic analysis revealed that these Zambian IBDVs separated into three genotypes of very virulent (VV) IBDVs. Although the majority of these viruses belonged to the African VV type (VV1), which consisted of viruses from West Africa, South Africa and Zambia, one virus belonged to the East African VV type (VV2). Interestingly, a Zambian IBDV belonging to the VV3 genotype (composed of viruses from several continents) clustered with attenuated vaccine strains. Although sequence analysis of VP2-HVR showed that all detected Zambian IBDVs had conserved putative virulence marker amino acids (i.e., 222A, 242I, 256I, 294I and 299S), one virus had two unique amino acid substitutions, N280S and E300A. This study demonstrates the diversity of Zambian IBDVs and documents for the first time the possible involvement of attenuated vaccine strains in the epidemiology of IBD in Zambia. Strict biosecurity of poultry farms, monitoring of live vaccine use in the field, surveillance and characterization of IBDV in poultry and development of a vaccine from local or regional IBDV field strains are recommended for improved IBD control in Zambia.


Assuntos
Infecções por Birnaviridae/veterinária , Vírus da Doença Infecciosa da Bursa/classificação , Vírus da Doença Infecciosa da Bursa/isolamento & purificação , Doenças das Aves Domésticas/virologia , Animais , Infecções por Birnaviridae/virologia , Galinhas , Análise por Conglomerados , Genótipo , Vírus da Doença Infecciosa da Bursa/genética , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Proteínas Estruturais Virais/genética , Zâmbia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA